八年级下册数学广州数学期末试卷测试与练习(word解析版).doc
《八年级下册数学广州数学期末试卷测试与练习(word解析版).doc》由会员分享,可在线阅读,更多相关《八年级下册数学广州数学期末试卷测试与练习(word解析版).doc(27页珍藏版)》请在咨信网上搜索。
八年级下册数学广州数学期末试卷测试与练习(word解析版) 一、选择题 1.成立的条件是( ) A.﹣1≤a≤1 B.a≤﹣1 C.a≥1 D.﹣1<a<1 2.下面的每组数分别是一个三角形的三边长,其中能构成直角三角形的是( ) A. B.2,2,5 C.32,42,52 D.3,4,5 3.如图,在四边形中,对角线、相交于点,下列条件不能判定这个四边形是平行四边形的是( ) A., B., C., D., 4.某公司要招聘一位高管,面试时,一位应聘者的基本知识、表达能力,决策能力的得分分别是90分、82分,83分,若依次按20%,40%,40%的比例确定成绩,则应聘者的最终面试成绩是( ) A.82分 B.83分 C.84分 D.85分 5.如图所示,正方形ABCD的边长为4,点E为线段BC上一动点,连结AE,将AE绕点E顺时针旋转90°至EF,连结BF,取BF的中点M,若点E从点B运动至点C,则点M经过的路径长为( ) A.2 B. C. D.4 6.如图是两个全等的三角形纸片,其三边长之比为,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该顶点所在两边重合,记折叠后不重叠部分面积分别为,已知,则纸片的面积是( ) A.102 B.104 C.106 D.108 7.如图,在平行四边形中,为对角线,点是的中点,且,,四边形的周长为10,则平行四边形的周长为( ) A.10 B.12 C.15 D.20 8.下面图象反映的过程是:小刚从家去菜地浇水,又去玉米地除草,然后回家,如果菜地和玉米地的距离为a千米,小刚在玉米地除草比在菜地浇水多用了b分钟,则a,b的值分别为( ) A.1,8 B.0.5,12 C.1,12 D.0.5,8 二、填空题 9.已知,则________. 10.如图,菱形的对角线与相交于点.已知,.那么这个菱形的面积为__________. 11.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,BD的长为_____. 12.如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为________. 13.若直线y=kx+b(k≠0)经过点A(0,3),且与直线y=mx﹣m(m≠0)始终交于同一点(1,0),则k的值为________. 14.如图,在中,AD,CD分别平分和,,.若从以下三个条件:①;②;③中选择一个作为已知条件,则能使四边形ADCE为菱形的是_______(填序号). 15.如图,已知点,,,的坐标分别为,,,.线段、、组成的图形为图形,点沿移动,设点移动的距离为,直线:过点,且在点移动过程中,直线随运动而运动,当过点时,的值为__________;若直线与图形有一个交点,直接写出的取值范围是__________. 16.如图,在RtABC中,∠C=90°,AC=4,BC=6,D是BC的中点,E是AC上一动点,将CDE沿DE折叠到,连接AC′,当是直角三角形时,CE的长为_____. 三、解答题 17.计算: (1) (2) 18.一架云梯长25m,如图所示斜靠在一而墙上,梯子底端C离墙7m. (1)这个梯子的顶端A距地面有多高? (2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向滑动了多少米? 19.图1、图2均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,在给定的网格中按要求画图,所画图形的顶点均在格点上. (1)在图1中画一个面积为4的菱形; (2)在图2中画一个矩形,使其边长都是无理数,且邻边不相等. 20.如图,在中,两条对角线AC和BD相交于点O,并且,,. (1)AC与BD有什么位置关系?为什么? (2)四边形ABCD是菱形吗?为什么? 21.观察下列各式: 化简以上各式,并计算出结果; 以上式子与其结果存在一定的规律.请按规律写出第个式子及结果. 猜想第个式子及结果(用含(的整数)的式子写出),并对猜想进行证明. 22.4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过160元的按原价计费,超过160元后的部分打7折.设(单位:元)表示标价总额,(单位:元)表示应支付金额. (1)分别就两家书店的优惠方式,写出、关于的函数解析式;. (2)“世界读书日”这一天,当购书费用超过160元时如何选择这两家书店去购书更省钱? 23.定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”. (提出问题) (1)如图①,四边形与四边形都是正方形,,求证:四边形是“等垂四边形”; (类比探究) (2)如图②,四边形是“等垂四边形”,,连接,点,,分别是,,的中点,连接,,.试判定的形状,并证明; (综合运用) (3)如图③,四边形是“等垂四边形”,,,则边长的最小值为________. 24.如图①,在平面直角坐标系中,点A在直线y=﹣x上,且点A的横坐标为﹣6,直线AB分别交x轴、y轴于点B和点C.点B的坐标为(10,0). (1)求直线AB的解析式; (2)如图②,点D坐标为(4,8),连接AD、BD,动点P从点A出发,沿线段AD运动.过点P作x轴的垂线,交AB于点Q,连接DQ.设△BDQ的面积为S(S≠0),点P的横坐标为t,求S与t之间的函数关系式; (3)在(2)的条件下,连接PC,若∠CPD+∠OBD=90°,求t的值. 25.如图,四边形ABCD是边长为3的正方形,点E在边AD所在的直线上,连接CE,以CE为边,作正方形CEFG(点C、E、F、G按逆时针排列),连接BF. (1)如图1,当点E与点D重合时,BF的长为 ; (2)如图2,当点E在线段AD上时,若AE=1,求BF的长;(提示:过点F作BC的垂线,交BC的延长线于点M,交AD的延长线于点N.) (3)当点E在直线AD上时,若AE=4,请直接写出BF的长. 【参考答案】 一、选择题 1.C 解析:C 【分析】 直接利用二次根式有意义的条件、二次根式的乘法运算法则得出关于a的不等式组,进而得出答案. 【详解】 解:由题意可得:, 解得:a≥1, 故选:C. 【点睛】 本题考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键. 2.D 解析:D 【分析】 由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可. 【详解】 解:A、()2+()2≠()2,故不能构成直角三角形,故此选项不符合题意; B、22+22≠52,故不能构成直角三角形,故此选项不符合题意; C、因为32=9,42=16,52=25,92+162≠252,故不能构成直角三角形,故此选项不符合题意; D、32+42=52,故能构成直角三角形,故此选项符合题意. 故选:D. 【点睛】 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可. 3.D 解析:D 【解析】 【分析】 分别利用平行四边形的判定方法进行判断,即可得出结论. 【详解】 解:∵AB∥CD,AD∥BC, ∴四边形ABCD是平行四边形,故选项A不合题意; ∵AB∥CD,AB=CD, ∴四边形ABCD是平行四边形,故选项B不合题意; ∵OA=OC,OB=OD, ∴四边形ABCD是平行四边形,故选项C不合题意; ∵AB∥CD,AD=BC, ∴四边形ABCD不一定是平行四边形, ∴故选项D符合题意; 故选:D. 【点睛】 本题考查了平行四边形的判定,掌握平行四边形的判定方法是本题的关键. 4.C 解析:C 【解析】 【分析】 根据加权平均数的计算公式进行计算,即可得出答案. 【详解】 解:根据题意得: 90×20%+82×40%+83×40%=84(分); 故选:C. 【点睛】 本题主要考查了加权平均数的计算,掌握加权平均数的定义是解题的关键. 5.B 解析:B 【分析】 已知EF⊥AE,当E点在线段BC上运动到两端时,正好是M点运动的两个端点,由此可以判断M点的运动轨迹是BC、CD中点的连线长. 【详解】 解:取BC、CD的中点G、H,连接GH,连接BD ∴GH为△BCD的中位线,即 ∵将AE绕点E顺时针旋转90°至EF, ∴EF⊥AE, 当E点在B处时,M点在BC的中点G处,当E点在C点处时,M点在CD中点处, ∴点M经过的路径长为GH的长, ∵正方形ABCD的边长为4, ∴ ∴, 故选B. 【点睛】 本题主要考查了正方形的性质,勾股定理和中位线定理,解题的关键在于找到M点的运动轨迹. 6.D 解析:D 【解析】 【分析】 设,则,,根据勾股定理即可求得的长,利用表示出,同理表示出,根据,即可求得的值,进而求得三角形的面积. 【详解】 解:设,则,. 设,则,, 在直角中,, 根据勾股定理可得:, 解得:, 则, 同理可得:, , , 解得:, 纸片的面积是:, 故选:D. . 【点睛】 本题主要考查了翻折变换(折叠问题),三角形面积的计算,根据勾股定理求得CD的长是解题的关键. 7.D 解析:D 【解析】 【分析】 根据点O是BD的中点,且AD//EO,OF//AB,可得OE,OF分别是三角形ABD,三角形BCD的中位线,四边形OEBF是平行四边形,则AD=2OE,CD=2OF,OE=BF,OF=BE,由此可以推出OE+OF=5,再由四边形ABCD的周长=AB+BC+AD+CD=2(AD+CD)=4(OE+OF)进行求解即可. 【详解】 解:∵四边形ABCD是平行四边形, ∴AD∥BC, ∵点O是BD的中点,且AD//EO,OF//AB, ∴OE,OF分别是三角形ABD,三角形BCD的中位线,BC//EO, ∴四边形OEBF是平行四边形,AD=2OE,CD=2OF,OE=BF,OF=BE, ∵四边形OEBF的周长为10, ∴OE+BE+BF+OF=10, ∴OE+OF=5, ∵四边形ABCD是平行四边形, ∴AB=CD,AD=BC, ∴四边形ABCD的周长=AB+BC+AD+CD=2(AD+CD)=4(OE+OF)=20, 故选D. 【点睛】 本题主要考查了平行四边形的性质与判定,中位线定理,解题的关键在于能够熟练掌握相关知识进行求解. 8.D 解析:D 【分析】 先分析每一段图像对应的小刚的事件,再根据数据计算即可. 【详解】 解:此函数图像大致可分以下几个阶段: ①0-12分种,小刚从家走到菜地; ②12-27分钟,小刚在菜地浇水; ③27-33分钟,小刚从菜地走到玉米地; ④33-56分钟,小刚在玉米地除草; ⑤56-74分钟,小刚从玉米地回到家; 综合题意,由③的过程知,(千米); 由②、④的过程知b=(分钟). 故选D. 【点睛】 本题主要考查了学生对函数图象的理解,要求学生具有相应的读图能力,以及将图像信息与实际问题结合的能力,考生在解答此类试题时一定要注意分析,要能根据函数图象的性质和图象上的数据得出对应事件的信息,从而列出算式得到正确的结论. 二、填空题 9. 【解析】 【分析】 根据二次根式的非负性求出x,y,即可得解; 【详解】 ∵, ∴, ∴, ∴, ∴; 故答案是. 【点睛】 本题主要考查了利用二次根式的非负性化简求值,准确计算是解题的关键. 10.A 解析:96 【解析】 【分析】 根据菱形的性质可得AC⊥BD,然后利用勾股定理求出OB=8cm,得出BD=16cm,最后根据菱形的面积公式求解. 【详解】 ∵四边形ABCD为菱形, ∴AC⊥BD,OA=OC=AC=6cm,OB=OD, ∴OB===8(cm), ∴BD=2OB=16cm, S菱形ABCD=AC•BD=×12×16=96(cm2). 故答案为:96. 【点睛】 本题考查了菱形的性质以及勾股定理,解答本题的关键是掌握菱形的两条对角线互相垂直的性质. 11.A 解析:【解析】 【分析】 根据勾股定理求出AC,根据三角形的外角的性质得到∠B=∠CAB,根据等腰三角形的性质求出BC,计算即可. 【详解】 解:∵∠D=90°,CD=6,AD=8, ∴AC===10, ∵∠ACD=2∠B,∠ACD=∠B+∠CAB, ∴∠B=∠CAB, ∴BC=AC=10, ∴BD=BC+CD=16, 故答案:16. 【点睛】 本题考查勾股定理、三角形的外角的性质,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2. 12.B 解析: 【分析】 根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高. 【详解】 解:如图,连接AP, ∵在△ABC中,AB=3,AC=4,BC=5, ∴AB2+AC2=BC2, 即∠BAC=90°. 设Rt△ABC的斜边BC上的高为h. ∴h=, 又∵PE⊥AB于E,PF⊥AC于F, ∴四边形AEPF是矩形, ∴EF=AP. ∵M是EF的中点, ∴AM=EF=AP. 因为AP的最小值即为直角三角形ABC斜边上的高,即等于, ∴AM的最小值是×=. 故答案为:. 【点睛】 本题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段. 13.A 解析:-3 【分析】 根据题意直线y=kx+b(k≠0)经过点A(0,3)和点(1,0),然后根据待定系数法即可求得k的值. 【详解】 解:∵直线y=kx+b(k≠0)经过点A(0,3)和点(1,0), ∴, 解得k=﹣3, 故答案为:-3. 【点睛】 本题考查了待定系数法求一次函数的解析式,熟练运用待定系数法是解题的关键. 14.B 解析:② 【分析】 当BA=BC时,四边形ADCE是菱形.只要证明四边形ADCE是平行四边形,DA=DC即可解决问题. 【详解】 解:当时,四边形ADCE是菱形. 理由:,, ∴四边形ADCE是平行四边形. ∵, ∴. ∵AD,CD分别平分和, ∴, ∴, ∴四边形ADCE是菱形. 故答案为:②. 【点睛】 本题考查菱形的判断、平行四边形的判断和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 15.1或11 或 【分析】 l过点C、点P的位置有两种情况:①点P位于点E时,S=1;②点P位于点C时,S=11;求出l过临界点D、E、B即求出直线与图形有一个交点时b的取值范围. 【详解 解析:1或11 或 【分析】 l过点C、点P的位置有两种情况:①点P位于点E时,S=1;②点P位于点C时,S=11;求出l过临界点D、E、B即求出直线与图形有一个交点时b的取值范围. 【详解】 解:∵点A、B、C、D的坐标分别为(-2,2),(-2,1),(3,1),(3,2) ∴AD=BC=5,AB=1 当直线l过点C(3,1)时,1=-3+b,即b=4 ∴直线的解析式为y=-x+4. ∴,解得,即直线1与AD的交点E为(2,2) ∴DE=1. ∴如图:当l过点C时,点P位于点E或点C ①当l过点C时,点P位于点E时,S=DE=1; ②当l过点C时,点P位于点C时,S=AD+AB+BC=5+1+5=11.. ∴当1过点C时,S的值为1或11; 当直线l过点D时,b=5; 当直线1过点C时,b=4; 当直线1过点B时,将B(-2,1)代入y=-x+b得1=2+b,即b=-1 ∴当或时,直线与图形有一个交点. 故填1或11,或. 【点睛】 本题主要考查了一次函数图象与系数的关系、一次函数图象上点的坐标特征,根据题意求出临界值成为解答本题的关键. 16.或 【分析】 分两种情形,当或时,分别画出图形来解答. 【详解】 解:当时, 将沿折叠到△, , , 点、、三点共线, ,, 由勾股定理得, 设,则,, 在△中,由勾股定理得: , 解得, , 当 解析:或 【分析】 分两种情形,当或时,分别画出图形来解答. 【详解】 解:当时, 将沿折叠到△, , , 点、、三点共线, ,, 由勾股定理得, 设,则,, 在△中,由勾股定理得: , 解得, , 当时, , , , 不可能为, 综上,或. 故答案为:3或. 【点睛】 本题主要考查了翻折的性质,勾股定理等知识,解题的关键是学会运用分类讨论的思想思考问题,属于中考常考题型. 三、解答题 17.(1);(2)0 【分析】 (1)先化简二次根式和去绝对值,然后利用二次根式的混合运算法则求解即可; (2)利用二次根式的四则运算法则求解即可. 【详解】 (1)原式, , ; (2)原式, , . 解析:(1);(2)0 【分析】 (1)先化简二次根式和去绝对值,然后利用二次根式的混合运算法则求解即可; (2)利用二次根式的四则运算法则求解即可. 【详解】 (1)原式, , ; (2)原式, , . 【点睛】 本题主要考查了二次根式的混合计算,解题的关键在于能够熟练掌握相关运算法则进行求解. 18.(1)这个梯子的顶端距地面有高;(2)梯子的底部在水平方向滑动了. 【分析】 (1)根据勾股定理即可求解; (2)先求出BD,再根据勾股定理即可求解. 【详解】 解:(1)由题意可知:,;, 在中, 解析:(1)这个梯子的顶端距地面有高;(2)梯子的底部在水平方向滑动了. 【分析】 (1)根据勾股定理即可求解; (2)先求出BD,再根据勾股定理即可求解. 【详解】 解:(1)由题意可知:,;, 在中,由勾股定理得: , ∴ , 因此,这个梯子的顶端距地面有高. (2)由图可知:AD=4m, , 在中,由勾股定理得: , ∴ , ∴. 答:梯子的底部在水平方向滑动了. 【点睛】 此题主要考查勾股定理的实际应用,解题的关键是根据题意在直角三角形中,利用勾股定理进行求解. 19.(1)见解析;(2)见解析. 【解析】 【分析】 (1)直接利用菱形的性质画出符合题意的菱形; (2)利用网格结合矩形的判定和性质得出答案. 【详解】 (1)如图1所示:其四边形是菱形,且面积为4; 解析:(1)见解析;(2)见解析. 【解析】 【分析】 (1)直接利用菱形的性质画出符合题意的菱形; (2)利用网格结合矩形的判定和性质得出答案. 【详解】 (1)如图1所示:其四边形是菱形,且面积为4; (2)如图2所示:其四边形是边长为无理数的矩形. 【点睛】 本题考查应用设计与作图,解题的关键是熟练掌握菱形的性质与矩形的判定和性质. 20.(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析 【分析】 (1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系; ( 解析:(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析 【分析】 (1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系; (2)菱形的判定方法:对角线互相垂直平分的四边形是菱形,可得答案. 【详解】 解:(1)AC⊥BD; 理由如下: 在中,, ∵ ∴∠BOC=90 ∴AC⊥BD. (2)四边形ABCD是菱形 ∵四边形ABCD是平行四边形(已知), AC⊥BD(已证) ∴四边形ABCD是菱形. 【点睛】 此题主要考查了菱形的判定,平行四边形的性质,以及勾股定理的逆定理的运用,解题的关键是根据条件证出BO2+CO2=CB2. 21.;;第个式子为及结果为,证明见解析 【解析】 【分析】 (1)分别把每个式子的第二项进行分母有理化,观察结果; (2)根据(1)的结果写出第5个式子及结果; (3)根据(1)的规律可得,然后分母有理 解析:;;第个式子为及结果为,证明见解析 【解析】 【分析】 (1)分别把每个式子的第二项进行分母有理化,观察结果; (2)根据(1)的结果写出第5个式子及结果; (3)根据(1)的规律可得,然后分母有理化,求出结果即可. 【详解】 解: 第个式子为及结果为 证明:左边 右边 成立 【点睛】 本题主要考查分母有理化的知识点,解答本题的关键是找出上述各式的变化规律,此题难度一般. 22.(1);当x≤160, y乙=x, 当x>160时, ; (2)当时,选择甲书店购书更省钱;当时,选择乙书店购书更省钱.答案见解析. 【分析】 (1)根据公式:应支付的金额=标价总额×折扣,即可 解析:(1);当x≤160, y乙=x, 当x>160时, ; (2)当时,选择甲书店购书更省钱;当时,选择乙书店购书更省钱.答案见解析. 【分析】 (1)根据公式:应支付的金额=标价总额×折扣,即可得函数关系式; (2)求出两书店所需费用相同时的书本标价,从而可以判断哪家书店省钱. 【详解】 解:(1), 当x≤160, y乙=x, 当x>160时,y乙=160+0.7(x-160)=0.7x+48 即 (2)解:∵ 当时,即,解得 当时,即0.8x=0.7x+48,解得; 当时,即0.8x<0.7x+48,解得 所以当,去乙书店购书更省钱; 当,两家书店购书省钱一样; 当,去甲书店购书更省钱. 【点睛】 本题考查了一次函数在实际生活中的应用,关键是正确找出题中的等量关系,分情况讨论即可. 23.(1)见解析;(2)△EFG是等腰直角三角形,理由见解析(3) 【分析】 (1)延长,交于点,先证,得,.结合,知,即可得.从而得证; (2)延长,交于点,由四边形是“等垂四边形”, 知,,从而得, 解析:(1)见解析;(2)△EFG是等腰直角三角形,理由见解析(3) 【分析】 (1)延长,交于点,先证,得,.结合,知,即可得.从而得证; (2)延长,交于点,由四边形是“等垂四边形”, 知,,从而得,根据三个中点知,,,,,据此得,,.由可得答案; (3)延长,交于点,分别取,的中点,.连接,,,由及.可得答案. 【详解】 解:(1)如图①,延长,交于点, 四边形与四边形都为正方形, ,,. . . ,. , , 即, . . 又, 四边形是“等垂四边形”. (2)是等腰直角三角形. 理由如下:如图②,延长,交于点, 四边形是“等垂四边形”, , ,, 点,,分别是,,的中点, ,,,, ,,. . 是等腰直角三角形. (3)延长,交于点,分别取,的中点,.连接,,, 则, 由(2)可知. 最小值为, 故答案为:. 【点睛】 本题是四边形的综合问题,解题的关键是掌握正方形的性质,全等三角形的判定与性质,三角形中位线定理及等腰直角三角形的性质等知识点. 24.(1)y=﹣x+5;(2)S=﹣t+25;(3)t=﹣4 【解析】 【分析】 (1)因为A点在直线上,且横坐标为-6,可求得A点坐标,设直线AB的解析式为y=kx+b,将A、B两点的坐标代入,即可求 解析:(1)y=﹣x+5;(2)S=﹣t+25;(3)t=﹣4 【解析】 【分析】 (1)因为A点在直线上,且横坐标为-6,可求得A点坐标,设直线AB的解析式为y=kx+b,将A、B两点的坐标代入,即可求得直线AB的解析式; (2)根据已知条件得到四边形OADB是平行四边形,过A作x轴的垂线,垂足为E,过P作x轴的垂线,垂足为F,交AB与点Q,连接OQ,求得E(﹣6,0),推出四边形OADB是菱形,且可证≌,故=,求得Q(t,),根据三角形的面积公式即可得到结论; (3)设AD交y轴于F,连接CD,可证≌,根据全等三角形的性质得到∠AOC=∠ACD,求得∠CPD=∠ADC,再证≌,可得PF=DF,故t的值可得. 【详解】 解:(1)∵点A在直线,且点A的横坐标为-6,将x=-6代入,求得y=8, ∴A点坐标为(﹣6,8),且由题意可知B点坐标(10,0), 设直线AB的解析式为y=kx+b, ∴,解得:, ∴直线AB的解析式为:; (2)∵D(4,8),A(﹣6,8), ∴AD=10,且AD∥OB, 又∵B(10,0),O(0,0),故OB=10, ∴四边形OADB是平行四边形(对边平行且相等), 如图②,过A作x轴的垂线,垂足为E,过P作x轴的垂线,交AB与点Q,垂足为F,连接OQ, ∵A(-6,8),故E(-6,0), ∴AE=8,OE=6, ∴根据勾股定理,可得, ∴OA=AD, ∴四边形OADB是菱形(邻边相等的平行四边形是菱形),故BO=BD,菱形对角线平分每组对角,故∠QBD=∠QBF, 在和中, ∴≌(SAS), ∴=, ∵点P的横坐标为t,∴点Q的横坐标为t, ∵直线AB的解析式为; ∴Q(t,), ∴QF=, ∴===, ∴; (3)在(2)的条件下,四边形OADB是菱形,如图③,设AD交y轴于F,连接CD, 在和中, ∴≌(SAS), ∴∠AOC=∠ADC, ∵∠OAD+∠AOC=90°,∠OAD=∠OBD, ∴∠OBD+∠AOC=90°, ∵∠CPD+∠OBD=90°, ∴∠CPD=∠AOC, ∴∠CPD=∠ADC, 又∵AD⊥y轴, ∴∠CFP=∠CFD=90°, 在和中, ∴≌(AAS), ∴PF=DF, ∵D(4,8), ∴P(-4,8), ∴t=-4. 【点睛】 本题主要考察了求一次函数解析式、菱形的性质、勾股定理、全等三角形的证明及应用、动点问题与函数的结合,该题融合了较多知识点,解题的关键在于找出全等三角形,并应用全等的性质去计算. 25.(1);(2);(3) 【分析】 (1)利用勾股定理即可求出. (2)过点F作FH⊥AD交AD于的延长线于点H,作FM⊥AB于点M,证出,进而求得MF,BM的长,再利用勾股定理,即可求得. (3)分 解析:(1);(2);(3) 【分析】 (1)利用勾股定理即可求出. (2)过点F作FH⊥AD交AD于的延长线于点H,作FM⊥AB于点M,证出,进而求得MF,BM的长,再利用勾股定理,即可求得. (3)分两种情况讨论,同(2)证得三角形全等,再利用勾股定理即可求得. 【详解】 (1)由勾股定理得: (2)过点F作FH⊥AD交AD于的延长线于点H,作FM⊥AB于点M,如图2所示: 则FM=AH,AM=FH ∵四边形CEFG是正方形 ∴EC=EF,∠FEC=90° ∴∠DEC+∠FEH=90°, 又∵四边形是正方形 ∴∠ADC=90° ∴∠DEC+∠ECD=90°,∴∠ECD=∠FEH 又∵∠EDC=∠FHE=90°,∴ ∴FH=ED EH=CD=3 ∵AD=3,AE=1,ED=AD-AE=3-1=2,∴FH=ED=2 ∴MF=AH=1+3=4,MB=FH+CD=2+3=5 在Rt△BFM中,BF= (3)分两种情况: ①当点E在边AD的左侧时,过点F作FM⊥BC交BC的反向延长线于点M,交DE于点N.如图3所示: 同(2)得: ∴EN=CD=3,FN=ED=7 ∵AE=4∴AN=AE-EN=4-3=1 ∴MB=AN=1 FM=FN+NM=7+3=10 在中 由勾股定理得: ②当点E在边AD的右侧时,过点F作FN⊥AD交AD的延长线于点N,交BC延长线于M,如图4所示: 同理得: ∴NF=DE=1,EN=CD=3 ∴FM=3-1=2,CM=DN=DE+EN=1+3=4 ∴BM=CB+CM=3+4=7 在中 由勾股定理得: 故BF的长为 【点睛】 本题为考查三角形全等和勾股定理的综合题,难点在于根据E点位置的变化,画出图形,注意(3)分情况讨论,难度较大,属压轴题,熟练掌握三角形全等的性质和判定以及勾股定理的运用是解题关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 广州 期末试卷 测试 练习 word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文