湖北省黄冈中学人教版七年级下册数学期末压轴难题试卷及答案.doc
《湖北省黄冈中学人教版七年级下册数学期末压轴难题试卷及答案.doc》由会员分享,可在线阅读,更多相关《湖北省黄冈中学人教版七年级下册数学期末压轴难题试卷及答案.doc(26页珍藏版)》请在咨信网上搜索。
湖北省黄冈中学人教版七年级下册数学期末压轴难题试卷及答案百度文库 一、选择题 1.的平方根是() A. B. C. D. 2.下列生活现象中,不是平移现象的是( ) A.人站在运行着的电梯上 B.推拉窗左右推动 C.小明在荡秋千 D.小明躺在直线行驶的火车上睡觉 3.已知点在轴的负半轴上,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列说法中不正确的个数为( ). ①在同一平面内,两条直线的位置关系只有两种:相交和垂直. ②有且只有一条直线垂直于已知直线. ③如果两条直线都与第三条直线平行,那么这两条直线也互相平行. ④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离. ⑤过一点,有且只有一条直线与已知直线平行. A.2个 B.3个 C.4个 D.5个 5.将一副三角板按如图放置,如果,则有是( ) A.15° B.30° C.45° D.60° 6.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是( ) A.①② B.①②③ C.②③ D.③ 7.如图,已知,平分,,则的度数是( ) A. B. C. D. 8.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( ) A.(﹣1,﹣1) B.(﹣1,1) C.(﹣2,1) D.(2,0) 二、填空题 9.若,则的值为 10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______. 11.如图,DB是的高,AE是角平分线,,则______. 12.如图,直线,,,则________. 13.如图,有一条直的宽纸带,按图折叠,则的度数等于______. 14.按下面的程序计算: 若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可以是________. 15.如图,已知,,第四象限的点到轴的距离为3,若,满足,则与轴的交点坐标为__________. 16.如图,在直角坐标系中,A(1,3),B(2,0),第一次将△AOB变换成△OA1B1,A1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,……,则B2021的横坐标为______. 三、解答题 17.(1) (2) (3) 18.求下列各式中x的值. (1)x2﹣81=0; (2)2x2﹣16=0; (3)(x﹣2)3=﹣27. 19.请补全推理依据:如图,已知:,,求证:. 证明: ∵(已知) ∴( ) ∴( ) 又∵(已知) ∴( ) ∴( ) ∴( ) 20.如图,在平面直角坐标系中,三角形三个顶点的坐标分别为.点P是三角形的边上任意一点,三角形经过平移后得到三角形,已知点的对应点. (1)在图中画出平移后的三角形,并写出点的坐标; (2)求三角形的面积. 21.阅读下面文字,然后回答问题. 给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值.例如:2.4的整数部分为2,小数部分为;的整数部分为1,小数部分可用表示;再如,﹣2.6的整数部分为﹣3,小数部分为.由此我们得到一个真命题:如果,其中是整数,且,那么,. (1)如果,其中是整数,且,那么______,_______; (2)如果,其中是整数,且,那么______,______; (3)已知,其中是整数,且,求的值; (4)在上述条件下,求的立方根. 二十二、解答题 22.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______; (2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号); (3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由? 二十三、解答题 23.已知,点在与之间. (1)图1中,试说明:; (2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:. (3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系. 24.如图1,E点在BC上,∠A=∠D,AB∥CD. (1)直接写出∠ACB和∠BED的数量关系 ; (2)如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E; (3)保持(2)中所求的∠E不变,如图3,BM平分∠ABE的邻补角∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说理由. 25.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°. (1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数; (2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数; (3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果) 26.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°. (1)若DE//AB,则∠EAC= ; (2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F. ①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长; ②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由. 【参考答案】 一、选择题 1.B 解析:B 【分析】 直接根据平方根的定义进行解答即可. 【详解】 解:∵(±3)2=9, ∴9的平方根是±3. 故选:B. 【点睛】 本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根. 2.C 【分析】 根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可. 【详解】 解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发 解析:C 【分析】 根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可. 【详解】 解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发生变化,不是平移运动. 故选:C. 【点睛】 本题考查了图形的平移,解题的关键是掌握图形的平移只改变图形的位置,而不改变图形的形状和大小. 3.A 【分析】 根据y负半轴上点的纵坐标是负数判断出a,再根据各象限内点的坐标特征解答. 【详解】 ∵点P(0,a)在y轴的负半轴上, ∴, ∴, , ∴点M(-a,-a+5)在第一象限. 故选:A. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键. 4.C 【分析】 根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可. 【详解】 ∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确; ∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确; 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确; 从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确; 过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确; ∴不正确的有①②④⑤四个. 故选:C. 【点睛】 本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解. 5.C 【分析】 根据一副三角板的特征先得到∠E=60°,∠C=45°,∠1+∠2=90°,再根据已知求出∠1=60°,从而可证得AC∥DE,再根据平行线的性质即可求出∠4的度数. 【详解】 解:根据题意可知:∠E=60°,∠C=45°,∠1+∠2=90°, ∵, ∴∠1=60°, ∴∠1=∠E, ∴AC∥DE, ∴∠4=∠C=45°. 故选:C. 【点睛】 本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键. 6.D 【分析】 分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可. 【详解】 解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误; ②∵42=16,∴4是16的算术平方根,故②错误, ③平方根等于它本身的数只有0,故③正确, ④8的立方根是2,故④错误. 故选:D. 【点睛】 本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键. 7.B 【分析】 利用平行线的性质,角平分线的定义即可解决问题. 【详解】 解:∵,,平分, ∴,, ∵, ∴, 故选:B. 【点睛】 本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.A 【分析】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第 解析:A 【分析】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解. 【详解】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2, 由题意知:第一次相遇物体甲与物体乙运动的路程和为 , 物体甲运动的路程为,物体乙运动的路程为 , 此时在BC边相遇,即第一次相遇点为(-1,1); 第二次相遇物体甲与物体乙运动的路程和为 , 物体甲运动的路程为,物体乙运动的路程为, 在DE边相遇,即第二次相遇点为(-1,-1); 第三次相遇物体甲与物体乙运动的路程和为, 物体甲运动的路程为,物体乙运动的路程为, 在A点相遇,即第三次相遇点为(2,0); 此时甲乙回到原出发点,则每相遇三次,两点回到出发点, ∵ ,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1). 故选:A. 【点睛】 本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点. 二、填空题 9.-1 【解析】 解:有题意得,,,,则 解析:-1 【解析】 解:有题意得,,,,则 10.21:05. 【分析】 利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称. 【详解】 解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所 解析:21:05. 【分析】 利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称. 【详解】 解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05. 故答案为21:05 【点睛】 本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧. 11.【分析】 由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数. 【详解】 ∵AE是角平分线,∠BAE=26°, ∴∠FAD=∠B 解析: 【分析】 由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数. 【详解】 ∵AE是角平分线,∠BAE=26°, ∴∠FAD=∠BAE=26°, ∵DB是△ABC的高, ∴∠AFD=90°−∠FAD=90°−26°=64°, ∴∠BFE=∠AFD=64°. 故答案为64°. 【点睛】 本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键. 12.120°. 【分析】 延长AB交直线b于点E,可得,则 ,再由,可得 ,即可求解. 【详解】 解:如图,延长AB交直线b于点E, ∵, ∴, ∴ , ∵,, ∴ , ∴. 故答案为: . 【点睛】 解析:120°. 【分析】 延长AB交直线b于点E,可得,则 ,再由,可得 ,即可求解. 【详解】 解:如图,延长AB交直线b于点E, ∵, ∴, ∴ , ∵,, ∴ , ∴. 故答案为: . 【点睛】 本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键. 13.75° 【分析】 由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案. 【详解】 解:∵AD∥BC, ∴∠CBF=∠DEF=30°, ∵AB为 解析:75° 【分析】 由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案. 【详解】 解:∵AD∥BC, ∴∠CBF=∠DEF=30°, ∵AB为折痕, ∴2∠α+∠CBF=180°, 即2∠α+30°=180°, 解得∠α=75°. 故答案为:75°. 【点睛】 本题考查了平行线的性质,图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键. 14.131或26或5. 【解析】 试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5. 解析:131或26或5. 【解析】 试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5. 15.【分析】 根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解; 【详解】 ∵、都有意义, ∴, ∴, ∴, ∴, ∵第四象限的点到轴的距离为3, ∴C点的坐标为, 设直 解析: 【分析】 根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解; 【详解】 ∵、都有意义, ∴, ∴, ∴, ∴, ∵第四象限的点到轴的距离为3, ∴C点的坐标为, 设直线BC的解析式为, 把,代入得: , 解得:, 故BC的解析式为, 当时,, 故与轴的交点坐标为; 故答案是. 【点睛】 本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、、坐标与图形的性质,准确计算是解题的关键. 16.【分析】 根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解. 【详解】 解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可 解析: 【分析】 根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解. 【详解】 解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可得:, ∴B2021的横坐标为; 故答案为. 【点睛】 本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律. 三、解答题 17.(1);(2);(3) 【分析】 (1)先化简后计算即可; (2)先化简后计算即可; (3)首先去括号,然后再合并即可. 【详解】 解:(1)原式 (2)原式 (3)原式 【点睛】 此题主要考查了实 解析:(1);(2);(3) 【分析】 (1)先化简后计算即可; (2)先化简后计算即可; (3)首先去括号,然后再合并即可. 【详解】 解:(1)原式 (2)原式 (3)原式 【点睛】 此题主要考查了实数运算,关键是掌握数的开方,正确化简各数. 18.(1)x=±9;(2);(3)x=﹣1. 【分析】 (1)式子整理后,利用平方根的定义求解即可; (2)式子整理后,利用平方根的定义求解即可; (3)利用立方根的定义求解即可. 【详解】 解:(1) 解析:(1)x=±9;(2);(3)x=﹣1. 【分析】 (1)式子整理后,利用平方根的定义求解即可; (2)式子整理后,利用平方根的定义求解即可; (3)利用立方根的定义求解即可. 【详解】 解:(1)x2﹣81=0, x2=81, x=±9; (2)2x2﹣16=0, 2x2=16, x2=8, ; (3)(x﹣2)3=﹣27, x﹣2=﹣3, x=2﹣3, x=﹣1. 【点睛】 本题主要考查了平方根与立方根的定义:求a的立方根,实际上就是求哪个数的立方等于a,熟记相关定义是解答本题的关键. 19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据平行线的判定定理以及性质定理证明即可. 【详解】 证明:∵∠1+∠2=180 解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据平行线的判定定理以及性质定理证明即可. 【详解】 证明:∵∠1+∠2=180°(已知), ∴AD∥EF(同旁内角互补,两直线平行), ∴∠3=∠D(两直线平行,同位角相等), 又∵∠3=∠A(已知), ∴∠D=∠A(等量代换),, ∴AB∥CD(内错角相等,两直线平行), ∴∠B=∠C(两直线平行,内错角相等). 故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等. 【点睛】 本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键. 20.(1)作图见解析,;(2)7 【分析】 (1)直接利用P点平移变化规律得出A′、B′、C′的坐标;直接利用得出各对应点位置进而得出答案; (2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出 解析:(1)作图见解析,;(2)7 【分析】 (1)直接利用P点平移变化规律得出A′、B′、C′的坐标;直接利用得出各对应点位置进而得出答案; (2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出答案. 【详解】 解:(1)∵P到点的对应点,横坐标向左平移了两个单位,纵坐标向上平移了3个单位. ∵, ∴, 如图所示,三角形A′B′C′即为所求, (2)三角形ABC的面积为:4×5−×1×3−×2×4−×3×5=7. 【点睛】 此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键. 21.(1)2,;(2)﹣3,;(3);(4)3 【分析】 (1)先估算的大小,再依据定义分别取整数部分和小数部分即可; (2)先估算的大小,再依据定义分别取整数部分和小数部分即可; (3)先估算的大小, 解析:(1)2,;(2)﹣3,;(3);(4)3 【分析】 (1)先估算的大小,再依据定义分别取整数部分和小数部分即可; (2)先估算的大小,再依据定义分别取整数部分和小数部分即可; (3)先估算的大小,分别求得的值,再代入绝对值中计算即可; (4)根据前三问的结果,代入代数式求值,最后求立方根即可. 【详解】 (1), , , , 故答案为:2,,; (2) , , , 故答案为:﹣3,; (3), , , , ,, ; (4), , 27的立方根为3, 即的立方根为3. 【点睛】 本题考查了实数的运算,无理数的估算,绝对值计算,立方根,理解题意是解题的关键. 二十二、解答题 22.(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形 解析:(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可; (3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】 解:(1)∵小正方形的边长为1cm, ∴小正方形的面积为1cm2, ∴两个小正方形的面积之和为2cm2, 即所拼成的大正方形的面积为2 cm2, ∴大正方形的边长为cm, (2)∵, ∴, ∴, 设正方形的边长为a ∵, ∴, ∴, ∴ 故答案为:<; (3)解:不能裁剪出,理由如下: ∵长方形纸片的长和宽之比为, ∴设长方形纸片的长为,宽为, 则, 整理得:, ∴, ∵450>400, ∴, ∴, ∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】 本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查. 二十三、解答题 23.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD. 【分析】 (1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG, 解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD. 【分析】 (1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE; (2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD; (3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系. 【详解】 解:(1)如图1中,过点E作EG∥AB, 则∠BEG=∠ABE, 因为AB∥CD,EG∥AB, 所以CD∥EG, 所以∠DEG=∠CDE, 所以∠BEG+∠DEG=∠ABE+∠CDE, 即∠BED=∠ABE+∠CDE; (2)图2中,因为BF平分∠ABE, 所以∠ABE=2∠ABF, 因为DF平分∠CDE, 所以∠CDE=2∠CDF, 所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF), 由(1)得:因为AB∥CD, 所以∠BED=∠ABE+∠CDE, ∠BFD=∠ABF+∠CDF, 所以∠BED=2∠BFD. (3)∠BED=360°-2∠BFD. 图3中,过点E作EG∥AB, 则∠BEG+∠ABE=180°, 因为AB∥CD,EG∥AB, 所以CD∥EG, 所以∠DEG+∠CDE=180°, 所以∠BEG+∠DEG=360°-(∠ABE+∠CDE), 即∠BED=360°-(∠ABE+∠CDE), 因为BF平分∠ABE, 所以∠ABE=2∠ABF, 因为DF平分∠CDE, 所以∠CDE=2∠CDF, ∠BED=360°-2(∠ABF+∠CDF), 由(1)得:因为AB∥CD, 所以∠BFD=∠ABF+∠CDF, 所以∠BED=360°-2∠BFD. 【点睛】 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 24.(1)∠ACB+∠BED=180°;(2)100°;(3)40° 【分析】 (1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠A 解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40° 【分析】 (1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠ACB+∠CEF=180°,由对顶角相等可得结论; (2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据∠DEB比∠DHB大60°,列出等式即可求∠DEB的度数; (3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求∠PBM的度数. 【详解】 解:(1)如图1,延长交于点, , , , , , , , 故答案为:; (2)如图2,作,, , , ,, 平分, , , , , , , 平分, , , , , 设, , 比大, , , 解得. 的度数为; (3)的度数不变,理由如下: 如图3,过点作,设直线和直线相交于点, 平分,平分, , , ,, , , , , 由(2)可知:, , , , , , . 【点睛】 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 25.(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角 解析:(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数. (3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果. 【详解】 解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°; (2)∵∠BON=30°,∠N=30°, ∴∠BON=∠N, ∴MN∥CB. ∴∠OCD+∠CEN=180°, ∵∠OCD=45° ∴∠CEN=180°-45°=135°; (3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直. 【点睛】 本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数. 26.(1)45°;(2)①1;②是定值,∠M+∠N=142.5° 【分析】 (1)利用平行线的性质求解即可. (2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论. ②利用角平分线的定 解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5° 【分析】 (1)利用平行线的性质求解即可. (2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论. ②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论. 【详解】 解:(1)如图, ∵AB∥ED ∴∠E=∠EAB=90°(两直线平行,内错角相等), ∵∠BAC=45°, ∴∠CAE=90°-45°=45°. 故答案为:45°. (2)①如图1中, ∵OG⊥AC, ∴∠AOG=90°, ∵∠OAG=45°, ∴∠OAG=∠OGA=45°, ∴AO=OG=2, ∵S△AHG=•GH•AO=4,S△AHF=•FH•AO=1, ∴GH=4,FH=1, ∴OF=GH-HF-OG=4-1-2=1. ②结论:∠N+∠M=142.5°,度数不变. 理由:如图2中, ∵MF,MO分别平分∠AFO,∠AOF, ∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO, ∵NH,NG分别平分∠DHG,∠BGH, ∴∠N=180°-(∠DHG+∠BGH) =180°-(∠HAG+∠AGH+∠HAG+∠AHG) =180°-(180°+∠HAG) =90°-∠HAG =90°-(30°+∠FAO+45°) =52.5°-∠FAO, ∴∠M+∠N=142.5°. 【点睛】 本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖北省 黄冈 学人 教版七 年级 下册 数学 期末 压轴 难题 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文