中考数学——平行四边形的综合压轴题专题复习及答案.doc
《中考数学——平行四边形的综合压轴题专题复习及答案.doc》由会员分享,可在线阅读,更多相关《中考数学——平行四边形的综合压轴题专题复习及答案.doc(29页珍藏版)》请在咨信网上搜索。
中考数学——平行四边形的综合压轴题专题复习及答案 一、平行四边形 1.(1)、动手操作: 如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 . (2)、观察发现: 小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由. (3)、实践与运用: 将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小. 【答案】(1)125°;(2)同意;(3)60° 【解析】 试题分析:(1)根据直角三角形的两个锐角互余求得∠AEB=70°,根据折叠重合的角相等,得∠BEF=∠DEF=55°,根据平行线的性质得到∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°; (2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形; (3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可. 试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°, ∴∠AEB=70°, ∴∠BED=110°, 根据折叠重合的角相等,得∠BEF=∠DEF=55°. ∵AD∥BC, ∴∠EFC=125°, 再根据折叠的性质得到∠EFC′=∠EFC=125°.; (2)、同意,如图,设AD与EF交于点G 由折叠知,AD平分∠BAC,所以∠BAD=∠CAD. 由折叠知,∠AGE=∠DGE=90°, 所以∠AGE=∠AGF=90°, 所以∠AEF=∠AFE. 所以AE=AF, 即△AEF为等腰三角形. (3)、由题意得出:∠NMF=∠AMN=∠MNF, ∴MF=NF, 由折叠可知,MF=PF, ∴NF=PF, 而由题意得出:MP=MN, 又∵MF=MF, ∴△MNF≌△MPF, ∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°, 即3∠MNF=180°, ∴∠MNF=60°. 考点:1.折叠的性质;2.等边三角形的性质;3.全等三角形的判定和性质;4.等腰三角形的判定 2.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH. (1)求证:∠APB=∠BPH; (2)当点P在边AD上移动时,求证:△PDH的周长是定值; (3)当BE+CF的长取最小值时,求AP的长. 【答案】(1)证明见解析.(2)证明见解析.(3)2. 【解析】 试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案; (2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8; (3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值. 试题解析:(1)解:如图1, ∵PE=BE, ∴∠EBP=∠EPB. 又∵∠EPH=∠EBC=90°, ∴∠EPH-∠EPB=∠EBC-∠EBP. 即∠PBC=∠BPH. 又∵AD∥BC, ∴∠APB=∠PBC. ∴∠APB=∠BPH. (2)证明:如图2,过B作BQ⊥PH,垂足为Q. 由(1)知∠APB=∠BPH, 又∵∠A=∠BQP=90°,BP=BP, 在△ABP和△QBP中, , ∴△ABP≌△QBP(AAS), ∴AP=QP,AB=BQ, 又∵AB=BC, ∴BC=BQ. 又∠C=∠BQH=90°,BH=BH, 在△BCH和△BQH中, , ∴△BCH≌△BQH(SAS), ∴CH=QH. ∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8. ∴△PDH的周长是定值. (3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB. 又∵EF为折痕, ∴EF⊥BP. ∴∠EFM+∠MEF=∠ABP+∠BEF=90°, ∴∠EFM=∠ABP. 又∵∠A=∠EMF=90°, 在△EFM和△BPA中, , ∴△EFM≌△BPA(AAS). ∴EM=AP. 设AP=x 在Rt△APE中,(4-BE)2+x2=BE2. 解得BE=2+, ∴CF=BE-EM=2+-x, ∴BE+CF=-x+4=(x-2)2+3. 当x=2时,BE+CF取最小值, ∴AP=2. 考点:几何变换综合题. 3.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3). (1)当点N落在边BC上时,求t的值. (2)当点N到点A、B的距离相等时,求t的值. (3)当点Q沿D→B运动时,求S与t之间的函数表达式. (4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF与四边形PQMN的面积比为2:3时t的值. 【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或 【解析】 试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3; (2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ; (3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN. (4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值. 试题解析:(1)∵△PQN与△ABC都是等边三角形, ∴当点N落在边BC上时,点Q与点B重合. ∴DQ=3 ∴2t=3. ∴t=; (2)∵当点N到点A、B的距离相等时,点N在边AB的中线上, ∴PD=DQ, 当0<t<时, 此时,PD=t,DQ=2t ∴t=2t ∴t=0(不合题意,舍去), 当≤t<3时, 此时,PD=t,DQ=6﹣2t ∴t=6﹣2t, 解得t=2; 综上所述,当点N到点A、B的距离相等时,t=2; (3)由题意知:此时,PD=t,DQ=2t 当点M在BC边上时, ∴MN=BQ ∵PQ=MN=3t,BQ=3﹣2t ∴3t=3﹣2t ∴解得t= 如图①,当0≤t≤时, S△PNQ=PQ2=t2; ∴S=S菱形PQMN=2S△PNQ=t2, 如图②,当≤t≤时, 设MN、MQ与边BC的交点分别是E、F, ∵MN=PQ=3t,NE=BQ=3﹣2t, ∴ME=MN﹣NE=PQ﹣BQ=5t﹣3, ∵△EMF是等边三角形, ∴S△EMF=ME2=(5t﹣3)2 . ; (4)MN、MQ与边BC的交点分别是E、F, 此时<t<, t=1或. 考点:几何变换综合题 4.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF. (1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=2,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为或. 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE; (2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE; (3)分点P在AO上与CO上两种情况分别画图进行解答即可得. 【详解】(1)如图1中,延长EO交CF于K, ∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO, ∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK, ∵△EFK是直角三角形,∴OF=EK=OE; (2)如图2中,延长EO交CF于K, ∵∠ABC=∠AEB=∠CFB=90°, ∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF, ∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF, ∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF, ∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE; (3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H, ∵|CF﹣AE|=2,EF=2,AE=CK,∴FK=2, 在Rt△EFK中,tan∠FEK=,∴∠FEK=30°,∠EKF=60°, ∴EK=2FK=4,OF=EK=2, ∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2, 在Rt△PHF中,PH=PF=1,HF=,OH=2﹣, ∴OP=. 如图4中,点P在线段OC上,当PO=PF时,∠POF=∠PFO=30°, ∴∠BOP=90°, ∴OP=OE=, 综上所述:OP的长为或. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键. 5.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F. (1)如图①,当点D落在BC边上时,求点D的坐标; (2)如图②,当点D落在线段BE上时,AD与BC交于点H. ①求证△ADB≌△AOB; ②求点H的坐标. (3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可). 【答案】(1)D(1,3);(2)①详见解析;②H(,3);(3)≤S≤. 【解析】 【分析】 (1)如图①,在Rt△ACD中求出CD即可解决问题; (2)①根据HL证明即可; ②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题; (3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题; 【详解】 (1)如图①中, ∵A(5,0),B(0,3), ∴OA=5,OB=3, ∵四边形AOBC是矩形, ∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°, ∵矩形ADEF是由矩形AOBC旋转得到, ∴AD=AO=5, 在Rt△ADC中,CD==4, ∴BD=BC-CD=1, ∴D(1,3). (2)①如图②中, 由四边形ADEF是矩形,得到∠ADE=90°, ∵点D在线段BE上, ∴∠ADB=90°, 由(1)可知,AD=AO,又AB=AB,∠AOB=90°, ∴Rt△ADB≌Rt△AOB(HL). ②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO, 又在矩形AOBC中,OA∥BC, ∴∠CBA=∠OAB, ∴∠BAD=∠CBA, ∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m, 在Rt△AHC中,∵AH2=HC2+AC2, ∴m2=32+(5-m)2, ∴m=, ∴BH=, ∴H(,3). (3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=•DE•DK=×3×(5-)=, 当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=×D′E′×KD′=×3×(5+)=. 综上所述,≤S≤. 【点睛】 本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题. 6.已知:在菱形ABCD中,E,F是BD上的两点,且AE∥CF. 求证:四边形AECF是菱形. 【答案】见解析 【解析】 【分析】 由菱形的性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形的判定和菱形的判定可得四边形AECF是菱形. 【详解】 证明:∵四边形ABCD是菱形 ∴AB∥CD,AB=CD,∠ADF=∠CDF, ∵AB=CD,∠ADF=∠CDF,DF=DF ∴△ADF≌△CDF(SAS) ∴AF=CF, ∵AB∥CD,AE∥CF ∴∠ABE=∠CDF,∠AEF=∠CFE ∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD ∴△ABE≌△CDF(AAS) ∴AE=CF,且AE∥CF ∴四边形AECF是平行四边形 又∵AF=CF, ∴四边形AECF是菱形 【点睛】 本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定. 7.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF. (1)求证:四边形BCFD是菱形; (2)若AD=1,BC=2,求BF的长. 【答案】(1)证明见解析(2)2 【解析】 (1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD, ∵点E为CD的中点,∴DE=EC, 在△BCE与△FDE中,, ∴△BCE≌△FDE,∴DF=BC, 又∵DF∥BC,∴四边形BCDF为平行四边形, ∵BD=BC,∴四边形BCFD是菱形; (2)∵四边形BCFD是菱形,∴BD=DF=BC=2, 在Rt△BAD中,AB=, ∵AF=AD+DF=1+2=3,在Rt△BAF中,BF==2. 8.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF. (1)求证:AE=DF; (2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由; (3)当t为何值时,△DEF为直角三角形?请说明理由. 【答案】(1)见解析;(2)能,t=10;(3)t=或12. 【解析】 【分析】 (1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明; (2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值; (3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论. 【详解】 解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°, ∴AB=AC=×60=30cm, ∵CD=4t,AE=2t, 又∵在Rt△CDF中,∠C=30°, ∴DF=CD=2t,∴DF=AE; (2)能, ∵DF∥AB,DF=AE, ∴四边形AEFD是平行四边形, 当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10, ∴当t=10时,AEFD是菱形; (3)若△DEF为直角三角形,有两种情况: ①如图1,∠EDF=90°,DE∥BC, 则AD=2AE,即60﹣4t=2×2t,解得:t=, ②如图2,∠DEF=90°,DE⊥AC, 则AE=2AD,即,解得:t=12, 综上所述,当t=或12时,△DEF为直角三角形. 9.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°. (1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF; (2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2; (3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系. 【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2. 【解析】 试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF; (2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2; (3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF. 试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG, ∴AF=AG,∠FAG=90°, ∵∠EAF=45°, ∴∠GAE=45°, 在△AGE与△AFE中, , ∴△AGE≌△AFE(SAS); (2)设正方形ABCD的边长为a. 将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM. 则△ADF≌△ABG,DF=BG. 由(1)知△AEG≌△AEF, ∴EG=EF. ∵∠CEF=45°, ∴△BME、△DNF、△CEF均为等腰直角三角形, ∴CE=CF,BE=BM,NF=DF, ∴a﹣BE=a﹣DF, ∴BE=DF, ∴BE=BM=DF=BG, ∴∠BMG=45°, ∴∠GME=45°+45°=90°, ∴EG2=ME2+MG2, ∵EG=EF,MG=BM=DF=NF, ∴EF2=ME2+NF2; (3)EF2=2BE2+2DF2. 如图所示,延长EF交AB延长线于M点,交AD延长线于N点, 将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE. 由(1)知△AEH≌△AEF, 则由勾股定理有(GH+BE)2+BG2=EH2, 即(GH+BE)2+(BM﹣GM)2=EH2 又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2, 即2(DF2+BE2)=EF2 考点:四边形综合题 10.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点. (1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°; (2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可). 【答案】(1)作图参见解析;(2)作图参见解析. 【解析】 试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可. 试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示; (2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3: 考点:1.作图﹣应用与设计作图;2.勾股定理. 11.如图①,四边形是知形,,点是线段上一动点(不与重合),点是线段延长线上一动点,连接交于点.设,已知与之间的函数关系如图②所示. (1)求图②中与的函数表达式; (2)求证:; (3)是否存在的值,使得是等腰三角形?如果存在,求出的值;如果不存在,说明理由 【答案】(1)y=﹣2x+4(0<x<2);(2)见解析;(3)存在,x=或或. 【解析】 【分析】 (1)利用待定系数法可得y与x的函数表达式; (2)证明△CDE∽△ADF,得∠ADF=∠CDE,可得结论; (3)分三种情况: ①若DE=DG,则∠DGE=∠DEG, ②若DE=EG,如图①,作EH∥CD,交AD于H, ③若DG=EG,则∠GDE=∠GED, 分别列方程计算可得结论. 【详解】 (1)设y=kx+b, 由图象得:当x=1时,y=2,当x=0时,y=4, 代入得:,得, ∴y=﹣2x+4(0<x<2); (2)∵BE=x,BC=2 ∴CE=2﹣x, ∴, ∴, ∵四边形ABCD是矩形, ∴∠C=∠DAF=90°, ∴△CDE∽△ADF, ∴∠ADF=∠CDE, ∴∠ADF+∠EDG=∠CDE+∠EDG=90°, ∴DE⊥DF; (3)假设存在x的值,使得△DEG是等腰三角形, ①若DE=DG,则∠DGE=∠DEG, ∵四边形ABCD是矩形, ∴AD∥BC,∠B=90°, ∴∠DGE=∠GEB, ∴∠DEG=∠BEG, 在△DEF和△BEF中, , ∴△DEF≌△BEF(AAS), ∴DE=BE=x,CE=2﹣x, ∴在Rt△CDE中,由勾股定理得:1+(2﹣x)2=x2, x=; ②若DE=EG,如图①,作EH∥CD,交AD于H, ∵AD∥BC,EH∥CD, ∴四边形CDHE是平行四边形, ∴∠C=90°, ∴四边形CDHE是矩形, ∴EH=CD=1,DH=CE=2﹣x,EH⊥DG, ∴HG=DH=2﹣x, ∴AG=2x﹣2, ∵EH∥CD,DC∥AB, ∴EH∥AF, ∴△EHG∽△FAG, ∴, ∴, ∴(舍), ③若DG=EG,则∠GDE=∠GED, ∵AD∥BC, ∴∠GDE=∠DEC, ∴∠GED=∠DEC, ∵∠C=∠EDF=90°, ∴△CDE∽△DFE, ∴, ∵△CDE∽△ADF, ∴, ∴, ∴2﹣x=,x=, 综上,x=或或. 【点睛】 本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键. 12.如图①,在矩形中,点从边的中点出发,沿着速运动,速度为每秒2个单位长度,到达点后停止运动,点是上的点,,设的面积为,点运动的时间为秒,与的函数关系如图②所示. (1)图①中= ,= ,图②中= . (2)当=1秒时,试判断以为直径的圆是否与边相切?请说明理由: (3)点在运动过程中,将矩形沿所在直线折叠,则为何值时,折叠后顶点的对应点落在矩形的一边上. 【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=、5、. 【解析】 【分析】 (1)由题意得出AB=2BE,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P在E处,m=△AEQ的面积=AQ×AE=20即可; (2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出PQ=2,设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,则MN=AB=8,O'M∥AB,MN=AB=8,由三角形中位线定理得出O'M=AP=3,求出O'N=MN-O'M=5<圆O'的半径,即可得出结论; (3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,则QF=AB=8,BF=AQ=10,由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出A'F==6,得出A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得出方程,解方程即可; ②当点P在BC边上,A'落在BC边上时,由折叠的性质得:A'P=AP,证出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可; ③当点P在BC边上,A'落在CD边上时,由折叠的性质得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可. 【详解】 (1)∵点P从AB边的中点E出发,速度为每秒2个单位长度, ∴AB=2BE, 由图象得:t=2时,BE=2×2=4, ∴AB=2BE=8,AE=BE=4, t=11时,2t=22, ∴BC=22-4=18, 当t=0时,点P在E处,m=△AEQ的面积=AQ×AE=×10×4=20; 故答案为8,18,20; (2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下: 当t=1时,PE=2, ∴AP=AE+PE=4+2=6, ∵四边形ABCD是矩形, ∴∠A=90°, ∴PQ=, 设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示: 则MN=AB=8,O'M∥AB,MN=AB=8, ∵O'为PQ的中点, ∴O''M是△APQ的中位线, ∴O'M=AP=3, ∴O'N=MN-O'M=5<, ∴以PQ为直径的圆不与BC边相切; (3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示: 则QF=AB=8,BF=AQ=10, ∵四边形ABCD是矩形, ∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18, 由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°, ∴A'F==6, ∴A'B=BF-A'F=4, 在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t, 由勾股定理得:42+(4-2t)2=(4+2t)2, 解得:t=; ②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示: 由折叠的性质得:A'P=AP, ∴∠APQ'=∠A'PQ, ∵AD∥BC, ∴∠AQP=∠A'PQ, ∴∠APQ=∠AQP, ∴AP=AQ=A'P=10, 在Rt△ABP中,由勾股定理得:BP==6, 又∵BP=2t-4, ∴2t-4=6,解得:t=5; ③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示: 由折叠的性质得:A'P=AP,A'Q=AQ=10, 在Rt△DQA'中,DQ=AD-AQ=8, 由勾股定理得:DA'==6, ∴A'C=CD-DA'=2, 在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t, 由勾股定理得:AP2=82+(2t-4)2,A'P2=22+(22-2t)2, ∴82+(2t-4)2=22+(22-2t)2, 解得:t=; 综上所述,t为或5或时,折叠后顶点A的对应点A′落在矩形的一边上. 【点睛】 四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识. 13.猜想与证明: 如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论. 拓展与延伸: (1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为 . (2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立. 【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析. 【解析】 试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME. 试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF, ∴∠EFM=∠HAM, 又∵∠FME=∠AMH,FM=AM, 在△FME和△AMH中, ∴△FME≌△AMH(ASA) ∴HM=EM, 在RT△HDE中,HM=DE, ∴DM=HM=ME, ∴DM=ME. (1)、如图1,延长EM交AD于点H, ∵四边形ABCD和CEFG是矩形, ∴AD∥EF, ∴∠EFM=∠HAM, 又∵∠FME=∠AMH,FM=AM, 在△FME和△AMH中, ∴△FME≌△AMH(ASA) ∴HM=EM, 在RT△HDE中,HM=EM ∴DM=HM=ME, ∴DM=ME, (2)、如图2,连接AE, ∵四边形ABCD和ECGF是正方形, ∴∠FCE=45°,∠FCA=45°, ∴AE和EC在同一条直线上, 在RT△ADF中,AM=MF, ∴DM=AM=MF, 在RT△AEF中,AM=MF, ∴AM=MF=ME, ∴DM=ME. 考点:(1)、三角形全等的性质;(2)、矩形的性质. 14.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形. (1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等. (2)引申:如果∠C90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由; (3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分的面积和有最大值是________. 【答案】(1)证明见解析;(2)成立,证明见解析;(3)18. 【解析】 试题分析:(1)因为AC=DC,∠ACB=∠DCF=90°,BC=FC,所以△ABC≌△DFC,从而△ABC与△DFC的面积相等; (2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC. 于是AP=DQ.又因为S△ABC=BC•AP,S△DFC=FC•DQ,所以S△ABC=S△DFC; (3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.所以S阴影部分面积和=3S△ABC=3××3×4=18. (1)证明:在△ABC与△DFC中, ∵, ∴△ABC≌△DFC. ∴△ABC与△DFC的面积相等; (2)解:成立.理由如下: 如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q. ∴∠APC=∠DQC=90°. ∵四边形ACDE,BCFG均为正方形, ∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°, ∴∠ACP=∠DCQ. ∴, △APC≌△DQC(AAS), ∴AP=DQ. 又∵S△ABC=BC•AP,S△DFC=FC•DQ, ∴S△ABC=S△DFC; (3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍, 若图中阴影部分的面积和有最大值,则三角形ABC的面积最大, ∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大. ∴S阴影部分面积和=3S△ABC=3××3×4=18. 考点:四边形综合题 15.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH. (1)求证:∠APB=∠BPH; (2)当点P在边AD上移动时,求证:△PDH的周长是定值; (3)当BE+CF的长取最小值时,求AP的长. 【答案】(1)证明见解析.(2)证明见解析.(3)2. 【解析】 试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案; (2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8; (3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值. 试题解析:(1)解:如图1, ∵PE=BE, ∴∠EBP=∠EPB. 又∵∠EPH=∠EBC=90°, ∴∠EPH-∠EPB=∠EBC-∠EBP. 即∠PBC=∠BPH. 又∵AD∥BC, ∴∠APB=∠PBC. ∴∠APB=∠BPH. (2)证明:如图2,过B作BQ⊥PH,垂足为Q. 由(1)知∠APB=∠BPH, 又∵∠A=∠BQP=90°,BP=BP, 在△ABP和△QBP中, , ∴△ABP≌△QBP(AAS), ∴AP=QP,AB=BQ, 又∵AB=BC, ∴BC=BQ. 又∠C=∠BQH=90°,BH=BH, 在△BCH和△BQH中, , ∴△BCH≌△B- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 平行四边形 综合 压轴 专题 复习 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文