中考数学压轴题专题平行四边形的经典综合题含答案解析.doc
《中考数学压轴题专题平行四边形的经典综合题含答案解析.doc》由会员分享,可在线阅读,更多相关《中考数学压轴题专题平行四边形的经典综合题含答案解析.doc(25页珍藏版)》请在咨信网上搜索。
中考数学压轴题专题平行四边形的经典综合题含答案解析 一、平行四边形 1.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H. (1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明; (2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG; (3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数. 【答案】(1)①证明见解析;②AG⊥BE.理由见解析;(2)证明见解析;(3)∠BHO=45°. 【解析】 试题分析:(1)①根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;②根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE; (2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立; (3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,所以HO平分∠BHG,即∠BHO=45°. 试题解析:(1)①∵四边形ABCD为正方形, ∴DA=DC,∠ADB=∠CDB=45°, 在△ADG和△CDG中 , ∴△ADG≌△CDG(SAS), ∴∠DAG=∠DCG; ②AG⊥BE.理由如下: ∵四边形ABCD为正方形, ∴AB=DC,∠BAD=∠CDA=90°, 在△ABE和△DCF中 , ∴△ABE≌△DCF(SAS), ∴∠ABE=∠DCF, ∵∠DAG=∠DCG, ∴∠DAG=∠ABE, ∵∠DAG+∠BAG=90°, ∴∠ABE+∠BAG=90°, ∴∠AHB=90°, ∴AG⊥BE; (2)由(1)可知AG⊥BE. 如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形. ∴∠MON=90°, 又∵OA⊥OB, ∴∠AON=∠BOM. ∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°, ∴∠OAN=∠OBM. 在△AON与△BOM中, ∴△AON≌△BOM(AAS). ∴OM=ON, ∴矩形OMHN为正方形, ∴HO平分∠BHG. (3)将图形补充完整,如答图2示,∠BHO=45°. 与(1)同理,可以证明AG⊥BE. 过点O作OM⊥BE于点M,ON⊥AG于点N, 与(2)同理,可以证明△AON≌△BOM, 可得OMHN为正方形,所以HO平分∠BHG, ∴∠BHO=45°. 考点:1、四边形综合题;2、全等三角形的判定与性质;3、正方形的性质 2.问题发现: ()如图①,点为平行四边形内一点,请过点画一条直线,使其同时平分平行四边形的面积和周长. 问题探究: ()如图②,在平面直角坐标系中,矩形的边、分别在轴、轴正半轴上,点 坐标为.已知点为矩形外一点,请过点画一条同时平分矩形面积和周长的直线,说明理由并求出直线,说明理由并求出直线被矩形截得线段的长度. 问题解决: ()如图③,在平面直角坐标系中,矩形的边、分别在轴、轴正半轴上,轴,轴,且,,点为五边形内一点.请问:是否存在过点的直线,分别与边与交于点、,且同时平分五边形的面积和周长?若存在,请求出点和点的坐标:若不存在,请说明理由. 【答案】(1)作图见解析;(2),;(3),. 【解析】 试题分析:(1)连接AC、BD交于点O,作直线PO,直线PO将平行四边形ABCD的面积和周长分别相等的两部分. (2)连接AC,BD交于点,过、P点的直线将矩形ABCD的面积和周长分为分别相等的两部分. (3)存在,直线平分五边形面积、周长. 试题解析:()作图如下: ()∵,, ∴设, ,, ∴, 交轴于, 交于, . ()存在,直线平分五边形面积、周长. ∵在直线上, ∴连交、于点、, 设,, ,, ∴直线, 联立,得, ∴,. 3.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E. (1)求证:△AED≌△CEB′ (2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值. 【答案】(1)证明见解析;(2). 【解析】 【分析】 (1)由折叠的性质知,,,,则由得到; (2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案. 【详解】 (1)四边形为矩形, ,, 又 , ; (2) , , , , 在中,, 过点作于, ,, , ,, , 、、共线, , 四边形是矩形, , . 【点睛】 此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用. 4.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°. (1)求证:四边形ABCD是矩形. (2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数. 【答案】(1)见解析;(2)18°. 【解析】 【分析】 (1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可; (2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案. 【详解】 (1)证明:∵AO=CO,BO=DO ∴四边形ABCD是平行四边形, ∴∠ABC=∠ADC, ∵∠ABC+∠ADC=180°, ∴∠ABC=∠ADC=90°, ∴四边形ABCD是矩形; (2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2, ∴∠FDC=36°, ∵DF⊥AC, ∴∠DCO=90°﹣36°=54°, ∵四边形ABCD是矩形, ∴OC=OD, ∴∠ODC=54° ∴∠BDF=∠ODC﹣∠FDC=18°. 【点睛】 本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形. 5.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF. (1)求证:四边形BCFD是菱形; (2)若AD=1,BC=2,求BF的长. 【答案】(1)证明见解析(2)2 【解析】 (1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD, ∵点E为CD的中点,∴DE=EC, 在△BCE与△FDE中,, ∴△BCE≌△FDE,∴DF=BC, 又∵DF∥BC,∴四边形BCDF为平行四边形, ∵BD=BC,∴四边形BCFD是菱形; (2)∵四边形BCFD是菱形,∴BD=DF=BC=2, 在Rt△BAD中,AB=, ∵AF=AD+DF=1+2=3,在Rt△BAF中,BF==2. 6.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上. (1)证明:BE=CF. (2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值. (3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值. 【答案】(1)见解析;(2);(3)见解析 【解析】 试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF; (2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题; (3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大. 试题解析:(1)证明:连接AC, ∵∠1+∠2=60°,∠3+∠2=60°, ∴∠1=∠3, ∵∠BAD=120°, ∴∠ABC=∠ADC=60° ∵四边形ABCD是菱形, ∴AB=BC=CD=AD, ∴△ABC、△ACD为等边三角形 ∴∠4=60°,AC=AB, ∴在△ABE和△ACF中, , ∴△ABE≌△ACF.(ASA) ∴BE=CF. (2)解:由(1)得△ABE≌△ACF, 则S△ABE=S△ACF. 故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC, 是定值. 作AH⊥BC于H点, 则BH=2, S四边形AECF=S△ABC = = =; (3)解:由“垂线段最短”可知, 当正三角形AEF的边AE与BC垂直时,边AE最短. 故△AEF的面积会随着AE的变化而变化,且当AE最短时, 正三角形AEF的面积会最小, 又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大. 由(2)得,S△CEF=S四边形AECF﹣S△AEF =﹣=. 点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键. 7.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF. 证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明) (变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由; 请运用上述解答中所积累的经验和方法完成下列两题: (结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=16,CF=6,求PG+PH的值. (迁移拓展)(3)在直角坐标系中,直线l1:y=-x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标. 【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10) 【解析】 【变式探究】 连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得; 【结论运用】 过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可; 【迁移拓展】 分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标. 【详解】 变式探究:连接AP,如图3: ∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP, ∴AB•CF=AC•PE﹣ AB•PD. ∵AB=AC, ∴CF=PD﹣PE; 结论运用:过点E作EQ⊥BC,垂足为Q,如图④, ∵四边形ABCD是长方形, ∴AD=BC,∠C=∠ADC=90°. ∵AD=16,CF=6, ∴BF=BC﹣CF=AD﹣CF=5, 由折叠可得:DF=BF,∠BEF=∠DEF. ∴DF=5. ∵∠C=90°, ∴DC==8. ∵EQ⊥BC,∠C=∠ADC=90°, ∴∠EQC=90°=∠C=∠ADC. ∴四边形EQCD是长方形. ∴EQ=DC=4. ∵AD∥BC, ∴∠DEF=∠EFB. ∵∠BEF=∠DEF, ∴∠BEF=∠EFB. ∴BE=BF, 由问题情境中的结论可得:PG+PH=EQ. ∴PG+PH=8. ∴PG+PH的值为8; 迁移拓展:如图, 由题意得:A(0,8),B(6,0),C(﹣4,0) ∴AB==10,BC=10. ∴AB=BC, (1)由结论得:P1D1+P1E1=OA=8 ∵P1D1=1=2, ∴P1E1=6 即点P1的纵坐标为6 又点P1在直线l2上, ∴y=2x+8=6, ∴x=﹣1, 即点P1的坐标为(﹣1,6); (2)由结论得:P2E2﹣P2D2=OA=8 ∵P2D2=2, ∴P2E2=10 即点P1的纵坐标为10 又点P1在直线l2上, ∴y=2x+8=10, ∴x=1, 即点P1的坐标为(1,10) 【点睛】 本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键. 8.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF. 【答案】见解析. 【解析】 【分析】 延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF. 【详解】 延长BF,交DA的延长线于点M,连接BD. ∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM. ∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD. ∵CE=AC,∴AC=CE= BD =DM. ∵FB=FM,∴BF⊥DF. 【点睛】 本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键. 9.阅读下列材料: 我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题: (1)下列哪个四边形一定是和谐四边形 . A.平行四边形 B.矩形 C.菱形 D.等腰梯形 (2)命题:“和谐四边形一定是轴对称图形”是 命题(填“真”或“假”). (3)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD的和谐线,且AB=BC,请求出∠ABC的度数. 【答案】(1) C ;(2)∠ABC的度数为60°或90°或150°. 【解析】 试题分析:(1)根据菱形的性质和和谐四边形定义,直接得出结论. (2)根据和谐四边形定义,分AD=CD,AD=AC,AC=DC讨论即可. (1)根据和谐四边形定义,平行四边形,矩形,等腰梯形的对角线不能把四边形分成两个等腰三角形,菱形的一条对角线能把四边形分成两个等腰三角形够.故选C. (2)∵等腰Rt△ABD中,∠BAD=90°,∴AB=AD. ∵AC为凸四边形ABCD的和谐线,且AB=BC, ∴分三种情况讨论: 若AD=CD,如图1,则凸四边形ABCD是正方形,∠ABC=90°; 若AD=AC,如图 2,则AB=AC=BC,△ABC是等边三角形,∠ABC=60°; 若AC=DC,如图 3,则可求∠ABC=150°. 考点:1.新定义;2.菱形的性质;3.正方形的判定和性质;4.等边三角形的判定和性质;5.分类思想的应用. 10.(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG. (拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG. (应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果) 【答案】见解析 【解析】 试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG; 应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案. 试题解析: 探究:∵四边形ABCD、四边形CEFG均为菱形, ∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F. ∵∠A=∠F, ∴∠BCD=∠ECG. ∴∠BCD-∠ECD=∠ECG-∠ECD, 即∠BCE=∠DCG. 在△BCE和△DCG中, ∴△BCE≌△DCG(SAS), ∴BE=DG. 应用:∵四边形ABCD为菱形, ∴AD∥BC, ∵BE=DG, ∴S△ABE+S△CDE=S△BEC=S△CDG=8, ∵AE=3ED, ∴S△CDE= , ∴S△ECG=S△CDE+S△CDG=10 ∴S菱形CEFG=2S△ECG=20. 11.如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF=90°,点E、F分别在边AD、AB上. (1)如图1,若点P与点O重合:①求证:AF=DE;②若正方形的边长为2,当∠DOE=15°时,求线段EF的长; (2)如图2,若Rt△PFE的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,证明:PE=2PF. 【答案】(1)①证明见解析,②;(2)证明见解析. 【解析】 【分析】 (1)①根据正方形的性质和旋转的性质即可证得:△AOF≌△DOE根据全等三角形的性质证明; ②作OG⊥AB于G,根据余弦的概念求出OF的长,根据勾股定理求值即可; (2)首先过点P作HP⊥BD交AB于点H,根据相似三角形的判定和性质求出PE与PF的数量关系. 【详解】 (1)①证明:∵四边形ABCD是正方形, ∴OA=OD,∠OAF=∠ODE=45°,∠AOD=90°, ∴∠AOE+∠DOE=90°, ∵∠EPF=90°, ∴∠AOF+∠AOE=90°, ∴∠DOE=∠AOF, 在△AOF和△DOE中, , ∴△AOF≌△DOE, ∴AF=DE; ②解:过点O作OG⊥AB于G, ∵正方形的边长为2, ∴OG=BC=, ∵∠DOE=15°,△AOF≌△DOE, ∴∠AOF=15°, ∴∠FOG=45°-15°=30°, ∴OF==2, ∴EF=; (2)证明:如图2,过点P作HP⊥BD交AB于点H, 则△HPB为等腰直角三角形,∠HPD=90°, ∴HP=BP, ∵BD=3BP, ∴PD=2BP, ∴PD=2HP, 又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°, ∴∠HPF=∠DPE, 又∵∠BHP=∠EDP=45°, ∴△PHF∽△PDE, ∴, ∴PE=2PF. 【点睛】 此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理.注意准确作出辅助线是解此题的关键. 12.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形. (1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等. (2)引申:如果∠C90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由; (3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分的面积和有最大值是________. 【答案】(1)证明见解析;(2)成立,证明见解析;(3)18. 【解析】 试题分析:(1)因为AC=DC,∠ACB=∠DCF=90°,BC=FC,所以△ABC≌△DFC,从而△ABC与△DFC的面积相等; (2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC. 于是AP=DQ.又因为S△ABC=BC•AP,S△DFC=FC•DQ,所以S△ABC=S△DFC; (3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.所以S阴影部分面积和=3S△ABC=3××3×4=18. (1)证明:在△ABC与△DFC中, ∵, ∴△ABC≌△DFC. ∴△ABC与△DFC的面积相等; (2)解:成立.理由如下: 如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q. ∴∠APC=∠DQC=90°. ∵四边形ACDE,BCFG均为正方形, ∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°, ∴∠ACP=∠DCQ. ∴, △APC≌△DQC(AAS), ∴AP=DQ. 又∵S△ABC=BC•AP,S△DFC=FC•DQ, ∴S△ABC=S△DFC; (3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍, 若图中阴影部分的面积和有最大值,则三角形ABC的面积最大, ∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大. ∴S阴影部分面积和=3S△ABC=3××3×4=18. 考点:四边形综合题 13.已知,以为边在外作等腰,其中. (1)如图①,若,,求的度数. (2)如图②,,,,. ①若,,的长为______. ②若改变的大小,但,的面积是否变化?若不变,求出其值;若变化,说明变化的规律. 【答案】(1)120°;(2)①2;②2 【解析】 试题分析:(1)根据SAS,可首先证明△AEC≌△ABD,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC的度数; (2)①如图2,在△ABC外作等边△BAE,连接CE,利用旋转法证明△EAC≌△BAD,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt△BCE中,由勾股定理求BE即可; ②过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK,仿照(2)利用旋转法证明△EAC≌△BAD,求得EC=DB,利用勾股定理即可得出结论. 试题解析: 解:(1)∵AE=AB,AD=AC, ∵∠EAB=∠DAC=60°, ∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC, ∴∠EAC=∠DAB, 在△AEC和△ABD中 ∴△AEC≌△ABD(SAS), ∴∠AEC=∠ABD, ∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE, ∴∠BFC=∠AEB+∠ABE=120°, 故答案为120°; (2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE. 由(1)可知△EAC≌△BAD. ∴EC=BD. ∴EC=BD=6, ∵∠BAE=60°,∠ABC=30°, ∴∠EBC=90°. 在RT△EBC中,EC=6,BC=4, ∴EB===2 ∴AB=BE=2. ②若改变α,β的大小,但α+β=90°,△ABC的面积不变化, 以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK. ∵AH⊥BC于H, ∴∠AHC=90°. ∵BE∥AH, ∴∠EBC=90°. ∵∠EBC=90°,BE=2AH, ∴EC2=EB2+BC2=4AH2+BC2. ∵K为BE的中点,BE=2AH, ∴BK=AH. ∵BK∥AH, ∴四边形AKBH为平行四边形. 又∵∠EBC=90°, ∴四边形AKBH为矩形.∠ABE=∠ACD, ∴∠AKB=90°. ∴AK是BE的垂直平分线. ∴AB=AE. ∵AB=AE,AC=AD,∠ABE=∠ACD, ∴∠EAB=∠DAC, ∴∠EAB+∠EAD=∠DAC+∠EAD, 即∠EAC=∠BAD, 在△EAC与△BAD中 ∴△EAC≌△BAD. ∴EC=BD=6. 在RT△BCE中,BE==2, ∴AH=BE=, ∴S△ABC=BC•AH=2 考点:全等三角形的判定与性质;等腰三角形的性质 14.已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,以线段AB为直角边在第二象限内左等腰直角三角形ABC,∠BAC=90°,如图1所示. (1)填空:AB= ,BC= . (2)将△ABC绕点B逆时针旋转, ①当AC与x轴平行时,则点A的坐标是 ②当旋转角为90°时,得到△BDE,如图2所示,求过B、D两点直线的函数关系式. ③在②的条件下,旋转过程中AC扫过的图形的面积是多少? (3)将△ABC向右平移到△A′B′C′的位置,点C′为直线AB上的一点,请直接写出△ABC扫过的图形的面积. 【答案】(1):5;5;(2)①(0,﹣2);②直线BD的解析式为y=﹣x+3;③S=π;(3)△ABC扫过的面积为. 【解析】 试题分析:(1)根据坐标轴上的点的坐标特征,结合一次函数的解析式求出A、B两点的坐标,利用勾股定理即可解答; (2)①因为B(0,3),所以OB=3,所以AB=5,所以AO=AB-BO=5-3=2,所以A(0,-2); ②过点C作CF⊥OA与点F,证明△AOB≌△CFA,得到点C的坐标,求出直线AC解析式,根据AC∥BD,所以直线BD的解析式的k值与直线AC的解析式k值相同,设出解析式,即可解答. ③利用旋转的性质进而得出A,B,C对应点位置进而得出答案,再利用以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积求出答案; (3)利用平移的性质进而得出△ABC扫过的图形是平行四边形的面积. 试题解析:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A、B两点, ∴A(-4,0),B(0,3), ∴AO=4,BO=3, 在Rt△AOB中,AB=, ∵等腰直角三角形ABC,∠BAC=90°, ∴BC=; (2)①如图1, ∵B(0,3), ∴OB=3, ∵AB=5, ∴AO=AB-BO=5-3=2, ∴A(0,-2). 当在x轴上方时,点A的坐标为(0,8), ②如图2, 过点C作CF⊥OA与点F, ∵△ABC为等腰直角三角形, ∴∠BAC=90°,AB=AC, ∴∠BAO+∠CAF=90°, ∵∠OBA+∠BAO=90°, ∴∠CAF=∠OBA, 在△AOB和△CFA中, , ∴△AOB≌△CFA(AAS); ∴OA=CF=4,OB=AF=3, ∴OF=7,CF=4, ∴C(-7,4) ∵A(-4,0) 设直线AC解析式为y=kx+b, 将A与C坐标代入得:, 解得:, 则直线AC解析式为y=x, ∵将△ABC绕点B逆时针旋转,当旋转角为90°时,得到△BDE, ∴∠ABD=90°, ∵∠CAB=90°, ∴∠ABD=∠CAB=90°, ∴AC∥BD, ∴设直线BD的解析式为y=x+b1, 把B(0,3)代入解析式的:b1=3, ∴直线BD的解析式为y=x+3; ③因为旋转过程中AC扫过的图形是以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积, 所以可得:S=; (3)将△ABC向右平移到△A′B′C′的位置,△ABC扫过的图形是一个平行四边形和三角形ABC,如图3: 将C点的纵坐标代入一次函数y=x+3,求得C′的横坐标为, 平行四边CAA′C′的面积为(7+)×4=, 三角形ABC的面积为×5×5= △ABC扫过的面积为:. 考点:几何变换综合题. 15.已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N. (1)求证:△ABM≌△CDN; (2)矩形ABCD和矩形AECF满足何种关系时,四边形 AMCN是菱形,证明你的结论. 【答案】(1)证明见解析;(2)当AB=AF时,四边形AMCN是菱形.证明见解析; 【解析】 试题分析:(1)由已知条件可得四边形AMCN是平行四边形,从而可得AM=CN,再由AB=CD,∠B=∠D=90°,利用HL即可证明; (2)若四边形AMCN为菱形,则有AM=AN,从已知可得∠BAM=∠FAN,又∠B=∠F=90°,所以有△ABM≌△AFN,从而得AB=AF,因此当AB=AF时,四边形AMCN是菱形. 试题解析:(1)∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD∥BC. ∵四边形AECF是矩形,∴AE∥CF.∴四边形AMCN是平行四边形.∴AM=CN.在Rt△ABM和Rt△CDN中,AB=CD,AM=CN,∴Rt△ABM≌Rt△CDN. (2)当AB=AF时,四边形AMCN是菱形. ∵四边形ABCD、AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90°.∴∠BAD-∠NAM=∠EAF-∠NAM,即∠BAM=∠FAN.又∵AB=AF,∴△ABM≌△AFN.∴AM=AN.由(1)知四边形AMCN是平行四边形,∴平行四边形AMCN是菱形. 考点:1.矩形的性质;2.三角形全等的判定与性质;3.菱形的判定.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 压轴 专题 平行四边形 经典 综合 答案 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文