备战中考数学压轴题专题平行四边形的经典综合题附详细答案.doc
《备战中考数学压轴题专题平行四边形的经典综合题附详细答案.doc》由会员分享,可在线阅读,更多相关《备战中考数学压轴题专题平行四边形的经典综合题附详细答案.doc(28页珍藏版)》请在咨信网上搜索。
备战中考数学压轴题专题平行四边形的经典综合题附详细答案 一、平行四边形 1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一. 例如:张老师给小聪提出这样一个问题: 如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少? 小聪的计算思路是: 根据题意得:S△ABC=BC•AD=AB•CE. 从而得2AD=CE,∴ 请运用上述材料中所积累的经验和方法解决下列问题: (1)(类比探究) 如图2,在▱ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF, 求证:BO平分角AOC. (2)(探究延伸) 如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA•PB=2AB. (3)(迁移应用) 如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分别为AE、BE的中点,连接DM、CN.求△DEM与△CEN的周长之和. 【答案】(1)见解析;(2)见解析;(3)5+ 【解析】 分析:(1)、根据平行四边形的性质得出△ABF和△BCE的面积相等,过点B作OG⊥AF于G,OH⊥CE于H,从而得出AF=CE,然后证明△BOG和△BOH全等,从而得出∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线的性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF的勾股定理得出x的值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形的周长之和. 同理:EM+EN=AB 详解:证明:(1)如图2, ∵四边形ABCD是平行四边形, ∴S△ABF=S▱ABCD,S△BCE=S▱ABCD, ∴S△ABF=S△BCE, 过点B作OG⊥AF于G,OH⊥CE于H, ∴S△ABF=AF×BG,S△BCE=CE×BH, ∴AF×BG=CE×BH,即:AF×BG=CE×BH, ∵AF=CE, ∴BG=BH, 在Rt△BOG和Rt△BOH中,, ∴Rt△BOG≌Rt△BOH, ∴∠BOG=∠BOH, ∴OB平分∠AOC, (2)如图3,过点P作PG⊥n于G,交m于F, ∵m∥n, ∴PF⊥AC, ∴∠CFP=∠BGP=90°, ∵点P是CD中点, 在△CPF和△DPG中,, ∴△CPF≌△DPG, ∴PF=PG=FG=2, 延长BP交AC于E, ∵m∥n, ∴∠ECP=∠BDP, ∴CP=DP, 在△CPE和△DPB中,, ∴△CPE≌△DPB, ∴PE=PB, ∵∠APB=90°, ∴AE=AB, ∴S△APE=S△APB, ∵S△APE=AE×PF=AE=AB,S△APB=AP×PB, ∴AB=AP×PB, 即:PA•PB=2AB; (3)如图4,延长AD,BC交于点G, ∵∠BAD=∠B, ∴AG=BG,过点A作AF⊥BC于F, 设CF=x(x>0), ∴BF=BC+CF=x+2, 在Rt△ABF中,AB=, 根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2, 在Rt△ACF中,AC=, 根据勾股定理得,AF2=AC2﹣CF2=26﹣x2, ∴34﹣(x+2)2=26﹣x2, ∴x=﹣1(舍)或x=1, ∴AF==5, 连接EG, ∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE), ∴DE+CE=AF=5, 在Rt△ADE中,点M是AE的中点, ∴AE=2DM=2EM, 同理:BE=2CN=2EN, ∵AB=AE+BE, ∴2DM+2CN=AB, ∴DM+CN=AB, 同理:EM+EN=AB ∴△DEM与△CEN的周长之和=DE+DM+EM+CE+CN+EN=(DE+CE)+[(DM+CN)+(EM+EN)] =(DE+CN)+AB=5+. 点睛:本题主要考查的就是三角形全等的判定与性质以及三角形的等积法,综合性非常强,难度较大.在解决这个问题的关键就是作出辅助线,然后根据勾股定理和三角形全等得出各个线段之间的关系. 2.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH. (1)求证:∠APB=∠BPH; (2)当点P在边AD上移动时,求证:△PDH的周长是定值; (3)当BE+CF的长取最小值时,求AP的长. 【答案】(1)证明见解析.(2)证明见解析.(3)2. 【解析】 试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案; (2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8; (3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值. 试题解析:(1)解:如图1, ∵PE=BE, ∴∠EBP=∠EPB. 又∵∠EPH=∠EBC=90°, ∴∠EPH-∠EPB=∠EBC-∠EBP. 即∠PBC=∠BPH. 又∵AD∥BC, ∴∠APB=∠PBC. ∴∠APB=∠BPH. (2)证明:如图2,过B作BQ⊥PH,垂足为Q. 由(1)知∠APB=∠BPH, 又∵∠A=∠BQP=90°,BP=BP, 在△ABP和△QBP中, , ∴△ABP≌△QBP(AAS), ∴AP=QP,AB=BQ, 又∵AB=BC, ∴BC=BQ. 又∠C=∠BQH=90°,BH=BH, 在△BCH和△BQH中, , ∴△BCH≌△BQH(SAS), ∴CH=QH. ∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8. ∴△PDH的周长是定值. (3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB. 又∵EF为折痕, ∴EF⊥BP. ∴∠EFM+∠MEF=∠ABP+∠BEF=90°, ∴∠EFM=∠ABP. 又∵∠A=∠EMF=90°, 在△EFM和△BPA中, , ∴△EFM≌△BPA(AAS). ∴EM=AP. 设AP=x 在Rt△APE中,(4-BE)2+x2=BE2. 解得BE=2+, ∴CF=BE-EM=2+-x, ∴BE+CF=-x+4=(x-2)2+3. 当x=2时,BE+CF取最小值, ∴AP=2. 考点:几何变换综合题. 3.操作:如图,边长为2的正方形ABCD,点P在射线BC上,将△ABP沿AP向右翻折,得到△AEP,DE所在直线与AP所在直线交于点F. 探究:(1)如图1,当点P在线段BC上时,①若∠BAP=30°,求∠AFE的度数;②若点E恰为线段DF的中点时,请通过运算说明点P会在线段BC的什么位置?并求出此时∠AFD的度数. 归纳:(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数是否会发生变化?试证明你的结论; 猜想:(3)如图2,若点P在BC边的延长线上时,∠AFD的度数是否会发生变化?试在图中画出图形,并直接写出结论. 【答案】(1)①45°;②BC的中点,45°;(2)不会发生变化,证明参见解析;(3)不会发生变化,作图参见解析. 【解析】 试题分析:(1)当点P在线段BC上时,①由折叠得到一对角相等,再利用正方形性质求出∠DAE度数,在三角形AFD中,利用内角和定理求出所求角度数即可;②由E为DF中点,得到P为BC中点,如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,得到AF垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,根据等式的性质求出∠1+∠2的度数,即为∠FAG度数,即可求出∠F度数;(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,∠AFD的度数不会发生变化,理由为:作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,根据∠FAE为∠BAE一半求出所求角度数即可. 试题解析:(1)①当点P在线段BC上时,∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②点E为DF的中点时,P也为BC的中点,理由如下: 如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,∵EG∥AD,DE=EF,∴EG=AD=1,∵AB=AE,∴点A在线段BE的垂直平分线上,同理可得点P在线段BE的垂直平分线上,∴AF垂直平分线段BE,∴OB=OE,∵GE∥BP,∴∠OBP=∠OEG,∠OPB=∠OGE,∴△BOP≌△EOG,∴BP=EG=1,即P为BC的中点,∴∠DAF=90°﹣∠BAF,∠ADF=45°+∠BAF,∴∠AFD=180°﹣∠DAF﹣∠ADF=45°;(2)∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示, 在△ADE中,AD=AE,AG⊥DE,∵AG平分∠DAE,即∠2=∠DAG,且∠1=∠BAP,∴∠1+∠2=×90°=45°,即∠FAG=45°,则∠AFD=90°﹣45°=45°;(3)如图2所示,∠AFE的大小不会发生变化,∠AFE=45°, 作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,∴∠BAE=90°+2α,∴∠FAE=∠BAE=45°+α,∴∠FAG=∠FAE﹣∠EAG=45°,在Rt△AFG中,∠AFE=90°﹣45°=45°. 考点:1.正方形的性质;2.折叠性质;3.全等三角形的判定与性质. 4.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F. (1)求证:四边形BEDF是平行四边形; (2)当四边形BEDF是菱形时,求EF的长. 【答案】(1)证明见解析;(2). 【解析】 分析:(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论; (2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长. 详解:(1)证明:∵四边形ABCD是矩形,O是BD的中点, ∴∠A=90°,AD=BC=4,AB∥DC,OB=OD, ∴∠OBE=∠ODF, 在△BOE和△DOF中, ∴△BOE≌△DOF(ASA), ∴EO=FO, ∴四边形BEDF是平行四边形; (2)当四边形BEDF是菱形时,BD⊥EF, 设BE=x,则 DE=x,AE=6-x, 在Rt△ADE中,DE2=AD2+AE2, ∴x2=42+(6-x)2, 解得:x= , ∵BD= =2, ∴OB=BD=, ∵BD⊥EF, ∴EO==, ∴EF=2EO=. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键 5.如图(1)在正方形ABCD中,点E是CD边上一动点,连接AE,作BF⊥AE,垂足为G交AD于F (1)求证:AF=DE; (2)连接DG,若DG平分∠EGF,如图(2),求证:点E是CD中点; (3)在(2)的条件下,连接CG,如图(3),求证:CG=CD. 【答案】(1)见解析;(2)见解析;(3)CG=CD,见解析. 【解析】 【分析】 (1)证明△BAF≌△ADE(ASA)即可解决问题. (2)过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.想办法证明AF=DF,即可解决问题. (3)延长AE,BC交于点P,由(2)知DE=CD,利用直角三角形斜边中线的性质,只要证明BC=CP即可. 【详解】 (1)证明:如图1中, 在正方形ABCD中,AB=AD,∠BAD=∠D=90o, ∴∠2+∠3=90° 又∵BF⊥AE, ∴∠AGB=90° ∴∠1+∠2=90°, ∴∠1=∠3 在△BAF与△ADE中, ∠1=∠3 BA=AD ∠BAF=∠D, ∴△BAF≌△ADE(ASA) ∴AF=DE. (2)证明:过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N. 由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD ∴△BAG≌△ADN(AAS) ∴AG=DN, 又DG平分∠EGF,DM⊥GF,DN⊥GE, ∴DM=DN, ∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF ∴△AFG≌△DFM(AAS), ∴AF=DF=DE=AD=CD, 即点E是CD的中点. (3)延长AE,BC交于点P,由(2)知DE=CD, ∠ADE=∠ECP=90°,∠DEA=∠CEP, ∴△ADE≌△PCE(ASA) ∴AE=PE, 又CE∥AB, ∴BC=PC, 在Rt△BGP中,∵BC=PC, ∴CG=BP=BC, ∴CG=CD. 【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,角平分线的性质定理,直角三角形斜边中线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题. 6.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD. ①求证:四边形BFDE是菱形; ②直接写出∠EBF的度数; (2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由; (3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系. 【答案】(1)①详见解析;②60°.(2)IH=FH;(3)EG2=AG2+CE2. 【解析】 【分析】 (1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可. ②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题. (2)IH=FH.只要证明△IJF是等边三角形即可. (3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题. 【详解】 (1)①证明:如图1中, ∵四边形ABCD是矩形, ∴AD∥BC,OB=OD, ∴∠EDO=∠FBO, 在△DOE和△BOF中, , ∴△DOE≌△BOF, ∴EO=OF,∵OB=OD, ∴四边形EBFD是平行四边形, ∵EF⊥BD,OB=OD, ∴EB=ED, ∴四边形EBFD是菱形. ②∵BE平分∠ABD, ∴∠ABE=∠EBD, ∵EB=ED, ∴∠EBD=∠EDB, ∴∠ABD=2∠ADB, ∵∠ABD+∠ADB=90°, ∴∠ADB=30°,∠ABD=60°, ∴∠ABE=∠EBO=∠OBF=30°, ∴∠EBF=60°. (2)结论:IH=FH. 理由:如图2中,延长BE到M,使得EM=EJ,连接MJ. ∵四边形EBFD是菱形,∠B=60°, ∴EB=BF=ED,DE∥BF, ∴∠JDH=∠FGH, 在△DHJ和△GHF中, , ∴△DHJ≌△GHF, ∴DJ=FG,JH=HF, ∴EJ=BG=EM=BI, ∴BE=IM=BF, ∵∠MEJ=∠B=60°, ∴△MEJ是等边三角形, ∴MJ=EM=NI,∠M=∠B=60° 在△BIF和△MJI中, , ∴△BIF≌△MJI, ∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF, ∴IH⊥JF, ∵∠BFI+∠BIF=120°, ∴∠MIJ+∠BIF=120°, ∴∠JIF=60°, ∴△JIF是等边三角形, 在Rt△IHF中,∵∠IHF=90°,∠IFH=60°, ∴∠FIH=30°, ∴IH=FH. (3)结论:EG2=AG2+CE2. 理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM, ∵∠FAD+∠DEF=90°, ∴AFED四点共圆, ∴∠EDF=∠DAE=45°,∠ADC=90°, ∴∠ADF+∠EDC=45°, ∵∠ADF=∠CDM, ∴∠CDM+∠CDE=45°=∠EDG, 在△DEM和△DEG中, , ∴△DEG≌△DEM, ∴GE=EM, ∵∠DCM=∠DAG=∠ACD=45°,AG=CM, ∴∠ECM=90° ∴EC2+CM2=EM2, ∵EG=EM,AG=CM, ∴GE2=AG2+CE2. 【点睛】 考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题. 7.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点. (1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°; (2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可). 【答案】(1)作图参见解析;(2)作图参见解析. 【解析】 试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可. 试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示; (2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3: 考点:1.作图﹣应用与设计作图;2.勾股定理. 8.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F. (1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积. 【答案】(1)见解析;(2)S平行四边形ADBC=. 【解析】 【分析】 (1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE =∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,则四边形BCFD是平行四边形. (2)在Rt△ABC中,求出BC,AC即可解决问题; 【详解】 解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形; (2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=,∴S平行四边形BCFD=3×=,S△ACF=×3×=,S平行四边形ADBC=. 【点睛】 本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 9.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上. (1)证明:BE=CF. (2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值. (3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值. 【答案】(1)见解析;(2);(3)见解析 【解析】 试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF; (2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题; (3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大. 试题解析:(1)证明:连接AC, ∵∠1+∠2=60°,∠3+∠2=60°, ∴∠1=∠3, ∵∠BAD=120°, ∴∠ABC=∠ADC=60° ∵四边形ABCD是菱形, ∴AB=BC=CD=AD, ∴△ABC、△ACD为等边三角形 ∴∠4=60°,AC=AB, ∴在△ABE和△ACF中, , ∴△ABE≌△ACF.(ASA) ∴BE=CF. (2)解:由(1)得△ABE≌△ACF, 则S△ABE=S△ACF. 故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC, 是定值. 作AH⊥BC于H点, 则BH=2, S四边形AECF=S△ABC = = =; (3)解:由“垂线段最短”可知, 当正三角形AEF的边AE与BC垂直时,边AE最短. 故△AEF的面积会随着AE的变化而变化,且当AE最短时, 正三角形AEF的面积会最小, 又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大. 由(2)得,S△CEF=S四边形AECF﹣S△AEF =﹣=. 点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键. 10.如图,点O是正方形ABCD两条对角线的交点,分别延长CO到点G,OC到点E,使OG=2OD、OE=2OC,然后以OG、OE为邻边作正方形OEFG. (1)如图1,若正方形OEFG的对角线交点为M,求证:四边形CDME是平行四边形. (2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′,如图2,连接AG′,DE′,求证:AG′=DE′,AG′⊥DE′; (3)在(2)的条件下,正方形OE′F′G′的边OG′与正方形ABCD的边相交于点N,如图3,设旋转角为α(0°<α<180°),若△AON是等腰三角形,请直接写出α的值. 【答案】(1)证明见解析;(2)证明见解析;(3)α的值是22.5°或45°或112.5°或135°或157.5°. 【解析】 【分析】 (1)由四边形OEFG是正方形,得到ME=GE,根据三角形的中位线的性质得到CD∥GE,CD=GE,求得CD=GE,即可得到结论; (2)如图2,延长E′D交AG′于H,由四边形ABCD是正方形,得到AO=OD,∠AOD=∠COD=90°,由四边形OEFG是正方形,得到OG′=OE′,∠E′OG′=90°,由旋转的性质得到∠G′OD=∠E′OC,求得∠AOG′=∠COE′,根据全等三角形的性质得到AG′=DE′,∠AG′O=∠DE′O,即可得到结论; (3)分类讨论,根据三角形的外角的性质和等腰三角形的性质即可得到结论. 【详解】 (1)证明:∵四边形OEFG是正方形, ∴ME=GE, ∵OG=2OD、OE=2OC, ∴CD∥GE,CD=GE, ∴CD=GE, ∴四边形CDME是平行四边形; (2)证明:如图2,延长E′D交AG′于H, ∵四边形ABCD是正方形, ∴AO=OD,∠AOD=∠COD=90°, ∵四边形OEFG是正方形, ∴OG′=OE′,∠E′OG′=90°, ∵将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′, ∴∠G′OD=∠E′OC, ∴∠AOG′=∠COE′, 在△AG′O与△ODE′中, , ∴△AG′O≌△ODE′ ∴AG′=DE′,∠AG′O=∠DE′O, ∵∠1=∠2, ∴∠G′HD=∠G′OE′=90°, ∴AG′⊥DE′; (3)①正方形OE′F′G′的边OG′与正方形ABCD的边AD相交于点N,如图3, Ⅰ、当AN=AO时, ∵∠OAN=45°, ∴∠ANO=∠AON=67.5°, ∵∠ADO=45°, ∴α=∠ANO-∠ADO=22.5°; Ⅱ、当AN=ON时, ∴∠NAO=∠AON=45°, ∴∠ANO=90°, ∴α=90°-45°=45°; ②正方形OE′F′G′的边OG′与正方形ABCD的边AB相交于点N,如图4, Ⅰ、当AN=AO时, ∵∠OAN=45°, ∴∠ANO=∠AON=67.5°, ∵∠ADO=45°, ∴α=∠ANO+90°=112.5°; Ⅱ、当AN=ON时, ∴∠NAO=∠AON=45°, ∴∠ANO=90°, ∴α=90°+45°=135°, Ⅲ、当AN=AO时,旋转角a=∠ANO+90°=67.5+90=157.5°, 综上所述:若△AON是等腰三角形时,α的值是22.5°或45°或112.5°或135°或157.5°. 【点睛】 本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性质的综合运用,有一定的综合性,分类讨论当△AON是等腰三角形时,求α的度数是本题的难点. 11.问题情境 在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC的延长线于点E,M是边AD的中点,连接MB,ME. 特例探究 (1)如图1,当∠ABC=90°时,写出线段MB与ME的数量关系,位置关系; (2)如图2,当∠ABC=120°时,试探究线段MB与ME的数量关系,并证明你的结论; 拓展延伸 (3)如图3,当∠ABC=α时,请直接用含α的式子表示线段MB与ME之间的数量关系. 【答案】(1)MB=ME,MB⊥ME;(2)ME=MB.证明见解析;(3)ME=MB·tan. 【解析】 【分析】 (1)如图1中,连接CM.只要证明△MBE是等腰直角三角形即可; (2)结论:EM=MB.只要证明△EBM是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan.证明方法类似; 【详解】 (1) 如图1中,连接CM. ∵∠ACD=90°,AM=MD, ∴MC=MA=MD, ∵BA=BC, ∴BM垂直平分AC, ∵∠ABC=90°,BA=BC, ∴∠MBE=∠ABC=45°,∠ACB=∠DCE=45°, ∵AB∥DE, ∴∠ABE+∠DEC=180°, ∴∠DEC=90°, ∴∠DCE=∠CDE=45°, ∴EC=ED,∵MC=MD, ∴EM垂直平分线段CD,EM平分∠DEC, ∴∠MEC=45°, ∴△BME是等腰直角三角形, ∴BM=ME,BM⊥EM. 故答案为BM=ME,BM⊥EM. (2)ME=MB. 证明如下:连接CM,如解图所示. ∵DC⊥AC,M是边AD的中点, ∴MC=MA=MD. ∵BA=BC, ∴BM垂直平分AC. ∵∠ABC=120°,BA=BC, ∴∠MBE=∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°. ∵AB∥DE, ∴∠ABE+∠DEC=180°, ∴∠DEC=60°, ∴∠DCE=∠DEC=60°, ∴△CDE是等边三角形, ∴EC=ED. ∵MC=MD, ∴EM垂直平分CD,EM平分∠DEC, ∴∠MEC=∠DEC=30°, ∴∠MBE+∠MEB=90°,即∠BME=90°. 在Rt△BME中,∵∠MEB=30°, ∴ME=MB. (3) 如图3中,结论:EM=BM•tan. 理由:同法可证:BM⊥EM,BM平分∠ABC, 所以EM=BM•tan. 【点睛】 本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题. 12.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG. (1)求证:四边形DEFG为菱形; (2)若CD=8,CF=4,求的值. 【答案】(1)证明见试题解析;(2). 【解析】 试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形; (2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值. 试题解析:(1)由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形; (2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=. 考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题. 13.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形. (1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等. (2)引申:如果∠C90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由; (3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分的面积和有最大值是________. 【答案】(1)证明见解析;(2)成立,证明见解析;(3)18. 【解析】 试题分析:(1)因为AC=DC,∠ACB=∠DCF=90°,BC=FC,所以△ABC≌△DFC,从而△ABC与△DFC的面积相等; (2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC. 于是AP=DQ.又因为S△ABC=BC•AP,S△DFC=FC•DQ,所以S△ABC=S△DFC; (3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.所以S阴影部分面积和=3S△ABC=3××3×4=18. (1)证明:在△ABC与△DFC中, ∵, ∴△ABC≌△DFC. ∴△ABC与△DFC的面积相等; (2)解:成立.理由如下: 如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q. ∴∠APC=∠DQC=90°. ∵四边形ACDE,BCFG均为正方形, ∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°, ∴∠ACP=∠DCQ. ∴, △APC≌△DQC(AAS), ∴AP=DQ. 又∵S△ABC=BC•AP,S△DFC=FC•DQ, ∴S△ABC=S△DFC; (3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍, 若图中阴影部分的面积和有最大值,则三角形ABC的面积最大, ∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大. ∴S阴影部分面积和=3S△ABC=3××3×4=18. 考点:四边形综合题 14.如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度的速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF为边向上作等边三角形EFG,设点E的运动时间为t秒,△EFG和△AHC的重合部分面积为S. (1)CE= (含t的代数式表示). (2)求点G落在线段AC上时t的值. (3)当S>0时,求S与t之间的函数关系式. (4)点P在点E出发的同时从点A出发沿A-H-A以每秒2个单位长度的速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t的取值范围. 【答案】(1)6-2t;(2)t=2;(3)当<t≤2时,S=t2+t-3;当2<t≤3时,S=-t2+t-;(4)<t<. 【解析】 试题分析:(1)由菱形的性质得出BC=AB=6得出CE=BC-BE=6-2t即可; (2)由菱形的性质和已知条件得出△ABC是等边三角形,得出∠ACB=60°,由等边三角形的性质和三角函数得出∠GEF=60°,GE=EF=BE•sin60°=t,证出∠GEC=90°,由三角函数求出CE==t,由BE+CE=BC得出方程,解方程即可; (3)分两种情况:①当<t≤2时,S=△EFG的面积-△NFN的面积,即可得出结果; ②当2<t≤3时,由①的结果容易得出结论; (4)由题意得出t=时,点P与H重合,E与H重合,得出点P在△EFG内部时,t的不等式,解不等式即可. 试题解析:(1)根据题意得:BE=2t, ∵四边形ABCD是菱形, ∴BC=AB=6, ∴CE=BC-BE=6-2t; (2)点G落在线段AC上时,如图1所示: ∵四边形ABCD是菱形, ∴AB=BC,- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战 中考 数学 压轴 专题 平行四边形 经典 综合 详细 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文