中考数学提高题专题复习二次函数练习题含答案解析.doc
《中考数学提高题专题复习二次函数练习题含答案解析.doc》由会员分享,可在线阅读,更多相关《中考数学提高题专题复习二次函数练习题含答案解析.doc(32页珍藏版)》请在咨信网上搜索。
中考数学提高题专题复习二次函数练习题含答案解析 一、二次函数 1.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D. (1)求抛物线的解析式; (2)求点P在运动的过程中线段PD长度的最大值; (3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由; (4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由. 【答案】(1)y=x2﹣4x+3;(2);(3)点P(1,0)或(2,﹣1);(4)M(2,﹣3). 【解析】 试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解; (2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答; (3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可; (4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可. 试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3; (2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+.∵a=﹣1<0,∴当x=时,线段PD的长度有最大值; (3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1). 综上所述:点P(1,0)或(2,﹣1)时,△APD能构成直角三角形; (4)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA﹣MC|<BC,∴当M、B、C三点共线时,|MA﹣MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k≠0),则,解得:,∴直线BC的解析式为y=﹣3x+3.∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴当x=2时,y=﹣3×2+3=﹣3,∴点M(2,﹣3),即,抛物线对称轴上存在点M(2,﹣3),使|MA﹣MC|最大. 点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键. 2.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D. (1)求抛物线的函数表达式; (2)求直线BC的函数表达式; (3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限. ①当线段PQ=AB时,求tan∠CED的值; ②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标. 【答案】(1)抛物线的函数表达式为y=x2-2x-3.(2)直线BC的函数表达式为y=x-3.(3)①.①P1(1-,-2),P2(1-,). 【解析】 【分析】 已知C点的坐标,即知道OC的长,可在直角三角形BOC中根据∠BCO的正切值求出OB的长,即可得出B点的坐标.已知了△AOC和△BOC的面积比,由于两三角形的高相等,因此面积比就是AO与OB的比.由此可求出OA的长,也就求出了A点的坐标,然后根据A、B、C三点的坐标即可用待定系数法求出抛物线的解析式. 【详解】 (1)∵抛物线的对称轴为直线x=1, ∴−=1 ∴b=-2 ∵抛物线与y轴交于点C(0,-3), ∴c=-3, ∴抛物线的函数表达式为y=x2-2x-3; (2)∵抛物线与x轴交于A、B两点, 当y=0时,x2-2x-3=0. ∴x1=-1,x2=3. ∵A点在B点左侧, ∴A(-1,0),B(3,0) 设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m, 则, ∴ ∴直线BC的函数表达式为y=x-3; (3)①∵AB=4,PQ=AB, ∴PQ=3 ∵PQ⊥y轴 ∴PQ∥x轴, 则由抛物线的对称性可得PM=, ∵对称轴是直线x=1, ∴P到y轴的距离是, ∴点P的横坐标为−, ∴P(−,−) ∴F(0,−), ∴FC=3-OF=3-= ∵PQ垂直平分CE于点F, ∴CE=2FC= ∵点D在直线BC上, ∴当x=1时,y=-2,则D(1,-2), 过点D作DG⊥CE于点G, ∴DG=1,CG=1, ∴GE=CE-CG=-1=. 在Rt△EGD中,tan∠CED=. ②P1(1-,-2),P2(1-,-). 设OE=a,则GE=2-a, 当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a), ∴1=1×(2-a), ∴a=1, ∴CE=2, ∴OF=OE+EF=2 ∴F、P的纵坐标为-2, 把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:x=1+或1- ∵点P在第三象限. ∴P1(1-,-2), 当CD为斜边时,DE⊥CE, ∴OE=2,CE=1, ∴OF=2.5, ∴P和F的纵坐标为:-, 把y=-,代入抛物线的函数表达式为y=x2-2x-3得:x=1-,或1+, ∵点P在第三象限. ∴P2(1-,-). 综上所述:满足条件为P1(1-,-2),P2(1-,-). 【点睛】 本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果. 3.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C. (1)求抛物线的解析式; (2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少? (3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标. 【答案】(1)y=x2﹣x﹣3 (2)运动1秒使△PBQ的面积最大,最大面积是 (3)K1(1,﹣),K2(3,﹣) 【解析】 【详解】 试题分析:(1)把点A、B的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值; (2)设运动时间为t秒.利用三角形的面积公式列出S△PBQ与t的函数关系式S△PBQ=﹣(t﹣1)2+.利用二次函数的图象性质进行解答; (3)利用待定系数法求得直线BC的解析式为y=x﹣3.由二次函数图象上点的坐标特征可设点K的坐标为(m,m2﹣m﹣3). 如图2,过点K作KE∥y轴,交BC于点E.结合已知条件和(2)中的结果求得S△CBK=.则根据图形得到:S△CBK=S△CEK+S△BEK=EK•m+•EK•(4﹣m),把相关线段的长度代入推知:﹣m2+3m=.易求得K1(1,﹣),K2(3,﹣). 解:(1)把点A(﹣2,0)、B(4,0)分别代入y=ax2+bx﹣3(a≠0),得 , 解得, 所以该抛物线的解析式为:y=x2﹣x﹣3; (2)设运动时间为t秒,则AP=3t,BQ=t. ∴PB=6﹣3t. 由题意得,点C的坐标为(0,﹣3). 在Rt△BOC中,BC==5. 如图1,过点Q作QH⊥AB于点H. ∴QH∥CO, ∴△BHQ∽△BOC, ∴,即, ∴HQ=t. ∴S△PBQ=PB•HQ=(6﹣3t)•t=﹣t2+t=﹣(t﹣1)2+. 当△PBQ存在时,0<t<2 ∴当t=1时, S△PBQ最大=. 答:运动1秒使△PBQ的面积最大,最大面积是; (3)设直线BC的解析式为y=kx+c(k≠0). 把B(4,0),C(0,﹣3)代入,得 , 解得, ∴直线BC的解析式为y=x﹣3. ∵点K在抛物线上. ∴设点K的坐标为(m,m2﹣m﹣3). 如图2,过点K作KE∥y轴,交BC于点E.则点E的坐标为(m,m﹣3). ∴EK=m﹣3﹣(m2﹣m﹣3)=﹣m2+m. 当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=. ∴S△CBK=. S△CBK=S△CEK+S△BEK=EK•m+•EK•(4﹣m) =×4•EK =2(﹣m2+m) =﹣m2+3m. 即:﹣m2+3m=. 解得 m1=1,m2=3. ∴K1(1,﹣),K2(3,﹣). 点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围. 4.在平面直角坐标系中,为原点,抛物线经过点,对称轴为直线,点关于直线的对称点为点.过点作直线轴,交轴于点. (Ⅰ)求该抛物线的解析式及对称轴; (Ⅱ)点在轴上,当的值最小时,求点的坐标; (Ⅲ)抛物线上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由. 【答案】(Ⅰ)抛物线的解析式为;抛物线的对称轴为直线;(Ⅱ)点坐标为;(Ⅲ)存在,点坐标为或,理由见解析 【解析】 【分析】 (Ⅰ)将点代入二次函数的解析式,即可求出a,再根据对称轴的公式即可求解. (Ⅱ)先求出B点胡坐标,要求胡最小值,只需找到B关于轴的对称点,则直线A与y轴的交点就是点P,根据待定系数法求出AB1的解析式,令y=0,即可求出P点的坐标. (Ⅲ)设点Q的坐标,并求出△AOQ面积,从而得到△AOQ面积,根据Q点胡不同位置进行分类,用m及割补法求出面积方程,即可求解. 【详解】 (Ⅰ)∵经过点, ∴,解得, ∴抛物线的解析式为, ∵, ∴抛物线的对称轴为直线. (Ⅱ)∵点,对称轴为, ∴点关于对称轴的对称点点坐标为. 作点关于轴的对称点,得, 设直线AB1的解析式为, 把点,点代入得, 解得,∴. ∴直线与轴的交点即为点. 令得, ∵点坐标为. (Ⅲ)∵,轴,∴,, ∴, 又∵,∴. 设点坐标为, 如图情况一,作,交延长线于点, ∵, ∴, 化简整理得, 解得,. 如图情况二,作,交延长线于点,交轴于点, ∵, ∴, 化简整理得, 解得,, ∴点坐标为或, ∴抛物线上存在点,使得. 【点睛】 主要考查了二次函数的性质,以及求两边和的最小值,面积等常见的题型,计算量较大,但难度不是很大. 5.对于二次函数 y=ax2+(b+1)x+(b﹣1),若存在实数 x0,使得当 x=x0,函数 y=x0,则称x0 为该函数的“不变值”. (1)当 a=1,b=﹣2 时,求该函数的“不变值”; (2)对任意实数 b,函数 y 恒有两个相异的“不变值”,求 a 的取值范围; (3)在(2)的条件下,若该图象上 A、B 两点的横坐标是该函数的“不变值”,且 A、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值. 【答案】(1)-1,3;(2)0<a<1;(3)- 【解析】 【分析】 (1)先确定二次函数解析式为y=x2-x-3,根据xo是函数y的一个不动点的定义,把(xo,xo)代入得x02-x0-3=xo,然后解此一元二次方程即可; (2)根据xo是函数y的一个不动点的定义得到axo2+(b+1)xo+(b-1)=xo,整理得ax02+bxo+(b-1)=0,则根据判别式的意义得到△=b2-4a(b-1)>0,即b2-4ab+4a>0,把b2-4ab+4a看作b的二次函数,由于对任意实数b,b2-4ab+4a>0成立,则(4a)2-4.4a<0,然后解此不等式即可. (3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a,b之间的关系式,整理后在利用基本不等式求解可得. 【详解】 解:(1)当a=1,b=-2时,二次函数解析式为y=x2-x-3,把(xo,xo)代入得x02-x0-3=xo,解得xo=-1或xo=3,所以函数y的不动点为-1和3; (2)因为y=xo,所以axo2+(b+1)xo+(b-1)=xo,即ax02+bxo+(b-1)=0, 因为函数y恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0,而对任意实数b,b2-4ab+4a>0成立,所以(4a)2-4.4a<0,解得0<a<1. (3)设A(x1,x1),B(x2,x2),则x1+x2 A,B的中点的坐标为( ),即M( ) A、B两点关于直线y=kx-2a+3对称, 又∵A,B在直线y=x上, ∴k=-1,A,B的中点M在直线y=kx-2a+3上. ∴= -2a+3 得:b=2a2-3a 所以当且仅当a= 时,b有最小值- 【点睛】 本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直. 6.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB. (1)求此抛物线的解析式及顶点D的坐标; (2)点M是抛物线上的动点,设点M的横坐标为m. ①当∠MBA=∠BDE时,求点M的坐标; ②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值. 【答案】(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或 【解析】 【分析】 (1)利用待定系数法即可解决问题; (2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题. 【详解】 (1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c, 得到,解得, ∴抛物线的解析式为y=﹣x2+2x+3, ∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4, ∴顶点D坐标(1,4); (2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3), ∴MG=|﹣m2+2m+3|,BG=3﹣m, ∴tan∠MBA=, ∵DE⊥x轴,D(1,4), ∴∠DEB=90°,DE=4,OE=1, ∵B(3,0), ∴BE=2, ∴tan∠BDE==, ∵∠MBA=∠BDE, ∴=, 当点M在x轴上方时, =, 解得m=﹣或3(舍弃), ∴M(﹣,), 当点M在x轴下方时, =, 解得m=﹣或m=3(舍弃), ∴点M(﹣,﹣), 综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣); ②如图中,∵MN∥x轴, ∴点M、N关于抛物线的对称轴对称, ∵四边形MPNQ是正方形, ∴点P是抛物线的对称轴与x轴的交点,即OP=1, 易证GM=GP,即|﹣m2+2m+3|=|1﹣m|, 当﹣m2+2m+3=1﹣m时,解得m=, 当﹣m2+2m+3=m﹣1时,解得m=, ∴满足条件的m的值为或. 【点睛】 本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题. 7.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;销售单价每涨1元,销售量将减少10个设每个销售单价为x元. (1)写出销售量y(件)和获得利润w(元)与销售单价x(元)之间的函数关系; (2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少? 【答案】(1)y=﹣10x+1000;w=﹣10x2+1300x﹣30000 (2)商场销售该品牌玩具获得的最大利润是8640元. 【解析】 【分析】 (1)利用销售单价每涨1元,销售量将减少10个即可表示出y=600﹣10(x﹣40),再利用w= y•(x﹣30)即可表示出w与x之间的关系式;(2)先将w=﹣10x2+1300x﹣30000变成顶点式,找到对称轴,利用函数图像的增减性确定在44≤x≤46范围内当x=46时有最大值,代入求值即可解题. 【详解】 解: (1)依题意,易得销售量y(件)与销售单价x(元)之间的函数关系:y=600﹣10(x﹣40)=﹣10x+1000 获得利润w(元)与销售单价x(元)之间的函数关系为:w=y•(x﹣30)=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000 (2)根据题意得,x≥14时且1000﹣10x≥540,解得:44≤x≤46 w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250 ∵a=﹣10<0,对称轴x=65 ∴当44≤x≤46时,y随x的增大而增大 ∴当x=46时,w最大值=8640元 即商场销售该品牌玩具获得的最大利润是8640元. 【点睛】 本题考查了二次函数的实际应用,难度较大,求解二次函数与利润之间的关系时,需要用代数式表示销售数量和销售单价,熟悉二次函数顶点式的性质是解题关键. 8.如图1,二次函数的图像与轴交于两点(点在点的左侧),与轴交于点. (1)求二次函数的表达式及点、点的坐标; (2)若点在二次函数图像上,且,求点的横坐标; (3)将直线向下平移,与二次函数图像交于两点(在左侧),如图2,过作轴,与直线交于点,过作轴,与直线交于点,当的值最大时,求点的坐标. 【答案】(1)y=,A(﹣1,0),B(4,0);(2)D点的横坐标为2+2,2﹣2,2;(3)M(,﹣) 【解析】 【分析】 (1)求出a,即可求解; (2)求出直线BC的解析式,过点D作DH∥y轴,与直线BC交于点H,根据三角形面积的关系求解; (3)过点M作MG∥x轴,交FN的延长线于点G,设M(m,m2﹣m﹣3),N(n,n2﹣n﹣3),判断四边形MNFE是平行四边形,根据ME=NF,求出m+n=4,再确定ME+MN=﹣m2+3m+5﹣m=﹣(m﹣)2+,即可求M; 【详解】 (1)y=ax2﹣3ax﹣4a与y轴交于点C(0,﹣3), ∴a=, ∴y=x2﹣x﹣3, 与x轴交点A(﹣1,0),B(4,0); (2)设直线BC的解析式为y=kx+b, ∴, ∴, ∴y=x﹣3; 过点D作DH∥y轴,与直线BC交于点H, 设H(x,x﹣3),D(x,x2﹣x﹣3), ∴DH=|x2﹣3x|, ∵S△ABC=, ∴S△DBC==6, ∴S△DBC=2×|x2﹣3x|=6, ∴x=2+2,x=2﹣2,x=2; ∴D点的横坐标为2+2,2﹣2,2; (3)过点M作MG∥x轴,交FN的延长线于点G, 设M(m,m2﹣m﹣3),N(n,n2﹣n﹣3), 则E(m,m﹣3),F(n,n﹣3), ∴ME=﹣m2+3m,NF=﹣n2+3n, ∵EF∥MN,ME∥NF, ∴四边形MNFE是平行四边形, ∴ME=NF, ∴﹣m2+3m=﹣n2+3n, ∴m+n=4, ∴MG=n﹣m=4﹣2m, ∴∠NMG=∠OBC, ∴cos∠NMG=cos∠OBC=, ∵B(4,0),C(0,﹣3), ∴OB=4,OC=3, 在Rt△BOC中,BC=5, ∴MN=(n﹣m)=(4﹣2m)=5﹣m, ∴ME+MN=﹣m2+3m+5﹣m=﹣(m﹣)2+, ∵﹣<0, ∴当m=时,ME+MN有最大值, ∴M(,﹣) 【点睛】 本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握待定系数法求函数解析式的方法,结合三角形的性质解题. 9.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3). (1)求抛物线y=x2+bx+c的表达式; (2)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标; (3)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值. 【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3). 【解析】 试题分析:(1)利用待定系数法求抛物线解析式; (2)如图1,设D(2,y),利用两点间的距离公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后讨论:当BD为斜边时得到18+4+(y﹣3)2=1+y2;当CD为斜边时得到4+(y﹣3)2=1+y2+18,再分别解方程即可得到对应D的坐标; (3)先证明∠CEF=90°得到△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,则PE=PG,PF=PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,这样PE+EF=2PE+PF=﹣t2+4t,然后利用二次函数的性质解决问题. 试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:,解得:,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3; (2)如图1,抛物线的对称轴为直线x=﹣=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5); 当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1); (3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=PG,PF=PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=PH=t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=PG=﹣t2+t,∴PE+EF=PE+PE+PF=2PE+PF=﹣t2+3t+t=﹣t2+4t=﹣(t﹣2)2+4,当t=2时,PE+EF的最大值为4. 点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式. 10.如图,已知顶点为的抛物线与轴交于,两点,直线过顶点和点. (1)求的值; (2)求函数的解析式; (3)抛物线上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由. 【答案】(1)﹣3;(2)yx2﹣3;(3)M的坐标为(3,6)或(,﹣2). 【解析】 【分析】 (1)把C(0,﹣3)代入直线y=x+m中解答即可; (2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可; (3)分M在BC上方和下方两种情况进行解答即可. 【详解】 (1)将C(0,﹣3)代入y=x+m,可得: m=﹣3; (2)将y=0代入y=x﹣3得: x=3, 所以点B的坐标为(3,0), 将(0,﹣3)、(3,0)代入y=ax2+b中,可得: , 解得:, 所以二次函数的解析式为:yx2﹣3; (3)存在,分以下两种情况: ①若M在B上方,设MC交x轴于点D, 则∠ODC=45°+15°=60°, ∴OD=OC•tan30°, 设DC为y=kx﹣3,代入(,0),可得:k, 联立两个方程可得:, 解得:, 所以M1(3,6); ②若M在B下方,设MC交x轴于点E, 则∠OEC=45°-15°=30°, ∴OE=OC•tan60°=3, 设EC为y=kx﹣3,代入(3,0)可得:k, 联立两个方程可得:, 解得:, 所以M2(,﹣2). 综上所述M的坐标为(3,6)或(,﹣2). 【点睛】 此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键. 11.如图1,在平面直角坐标系中,直线与抛物线交于两点,其中,.该抛物线与轴交于点,与轴交于另一点. (1)求的值及该抛物线的解析式; (2)如图2.若点为线段上的一动点(不与重合).分别以、为斜边,在直线的同侧作等腰直角△和等腰直角△,连接,试确定△面积最大时点的坐标. (3)如图3.连接、,在线段上是否存在点,使得以为顶点的三角形与△相似,若存在,请直接写出点的坐标;若不存在,请说明理由. 【答案】(1);(2)当,即时,最大,此时,所以;(3)存在点坐标为或. 【解析】 分析:(1)把A与B坐标代入一次函数解析式求出m与n的值,确定出A与B坐标,代入二次函数解析式求出b与c的值即可; (2)由等腰直角△APM和等腰直角△DPN,得到∠MPN为直角,由两直角边乘积的一半表示出三角形MPN面积,利用二次函数性质确定出三角形面积最大时P的坐标即可; (3)存在,分两种情况,根据相似得比例,求出AQ的长,利用两点间的距离公式求出Q坐标即可. 详解:(1)把A(m,0),B(4,n)代入y=x﹣1得:m=1,n=3,∴A(1,0),B(4,3). ∵y=﹣x2+bx+c经过点A与点B,∴,解得:,则二次函数解析式为y=﹣x2+6x﹣5; (2)如图2,△APM与△DPN都为等腰直角三角形,∴∠APM=∠DPN=45°,∴∠MPN=90°,∴△MPN为直角三角形,令﹣x2+6x﹣5=0,得到x=1或x=5,∴D(5,0),即DP=5﹣1=4,设AP=m,则有DP=4﹣m,∴PM=m,PN=(4﹣m),∴S△MPN=PM•PN=×m×(4﹣m)=﹣m2﹣m=﹣(m﹣2)2+1,∴当m=2,即AP=2时,S△MPN最大,此时OP=3,即P(3,0); (3)存在,易得直线CD解析式为y=x﹣5,设Q(x,x﹣5),由题意得:∠BAD=∠ADC=45°,分两种情况讨论: ①当△ABD∽△DAQ时,=,即=,解得:AQ=,由两点间的距离公式得:(x﹣1)2+(x﹣5)2=,解得:x=,此时Q(,﹣); ②当△ABD∽△DQA时,=1,即AQ=,∴(x﹣1)2+(x﹣5)2=10,解得:x=2,此时Q(2,﹣3). 综上,点Q的坐标为(2,﹣3)或(,﹣). 点睛:本题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,二次函数的图象与性质,相似三角形的判定与性质,两点间的距离公式,熟练掌握各自的性质是解答本题的关键. 12.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线解析式; (2)当点P运动到什么位置时,△PAB的面积最大? (3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由. 【答案】(1)y=﹣x2﹣2x+3 (2)(﹣,) (3)存在,P(﹣2,3)或P(,) 【解析】 【分析】 (1)用待定系数法求解;(2)过点P作PH⊥x轴于点H,交AB于点F,直线AB解析式为y=x+3,设P(t,﹣t2﹣2t+3)(﹣3<t<0),则F(t,t+3),则PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根据S△PAB=S△PAF+S△PBF写出解析式,再求函数最大值;(3)设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3),PD=﹣t2﹣3t,由抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4,由对称轴为直线x=﹣1,PE∥x轴交抛物线于点E,得yE=yP,即点E、P关于对称轴对称,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE为等腰直角三角形,∠DPE=90°,得PD=PE,再分情况讨论:①当﹣3<t≤﹣1时,PE=﹣2﹣2t;②当﹣1<t<0时,PE=2+2t 【详解】 解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0) ∴ 解得: ∴抛物线解析式为y=﹣x2﹣2x+3 (2)过点P作PH⊥x轴于点H,交AB于点F ∵x=0时,y=﹣x2﹣2x+3=3 ∴A(0,3) ∴直线AB解析式为y=x+3 ∵点P在线段AB上方抛物线上 ∴设P(t,﹣t2﹣2t+3)(﹣3<t<0) ∴F(t,t+3) ∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t ∴S△PAB=S△PAF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+ ∴点P运动到坐标为(﹣,),△PAB面积最大 (3)存在点P使△PDE为等腰直角三角形 设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3) ∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t ∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4 ∴对称轴为直线x=﹣1 ∵PE∥x轴交抛物线于点E ∴yE=yP,即点E、P关于对称轴对称 ∴=﹣1 ∴xE=﹣2﹣xP=﹣2﹣t ∴PE=|xE﹣xP|=|﹣2﹣2t| ∵△PDE为等腰直角三角形,∠DPE=90° ∴PD=PE ①当﹣3<t≤﹣1时,PE=﹣2﹣2t ∴﹣t2﹣3t=﹣2﹣2t 解得:t1=1(舍去),t2=﹣2 ∴P(﹣2,3) ②当﹣1<t<0时,PE=2+2t ∴﹣t2﹣3t=2+2t 解得:t1=,t2=(舍去) ∴P(,) 综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形. 【点睛】 考核知识点:二次函数的综合.数形结合分析问题,运用轴对称性质和等腰三角形性质分析问题是关键. 13.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M. (1)求该抛物线所表示的二次函数的表达式; (2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形? (3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由. 【答案】(1)y=﹣x2+x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似. 【解析】 分析:(1)待定系数法求解可得; (2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得; (3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再证△MBQ∽△BPQ得,即,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标. 详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4), 将点C(0,2)代入,得:-4a=2, 解得:a=-, 则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2; (2)由题意知点D坐标为(0,-2), 设直线BD解析式为y=kx+b, 将B(4,0)、D(0,-2)代入,得: ,解得:, ∴直线BD解析式为y=x-2, ∵QM⊥x轴,P(m,0), ∴Q(m,--m2+m+2)、M(m,m-2), 则QM=-m2+m+2-(m-2)=-m2+m+4, ∵F(0,)、D(0,-2), ∴DF=, ∵QM∥DF, ∴当-m2+m+4=时,四边形DMQF是平行四边形, 解得:m=-1(舍)或m=3, 即m=3时,四边形DMQF是平行四边形; (3)如图所示: ∵QM∥DF, ∴∠ODB=∠QMB, 分以下两种情况: ①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ, 则, ∵∠MBQ=90°, ∴∠MBP+∠PBQ=90°, ∵∠MPB=∠BPQ=90°, ∴∠MBP+∠BMP=90°, ∴∠BMP=∠PBQ, ∴△MBQ∽△BPQ, ∴,即, 解得:m1=3、m2=4, 当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去, ∴m=3,点Q的坐标为(3,2); ②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′, 此时m=-1,点Q的坐标为(-1,0); 综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似. 点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用. 14.一次函数y=x的图象如图所示,它与二次函数y=ax2-4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C. (1)求点C的坐标; (2)设二次函数图象的顶点为D. ①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式; ②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式. 【答案】(1)点C(2,);(2)①y=x2-x; ②y=-x2+2x+. 【解析】 试题分析:(1)求得二次函数y=ax2-4ax+c对称轴为直线x=2,把x=2代入y=x求得y=,即可得点C的坐标;(2)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m) ,根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax2-4ax+c得方程组,解得a、- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 提高 专题 复习 二次 函数 练习题 答案 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文