中考数学平行四边形-经典压轴题及答案解析.doc
《中考数学平行四边形-经典压轴题及答案解析.doc》由会员分享,可在线阅读,更多相关《中考数学平行四边形-经典压轴题及答案解析.doc(26页珍藏版)》请在咨信网上搜索。
中考数学平行四边形-经典压轴题及答案解析 一、平行四边形 1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE. (1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明; ②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断. (2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由. (3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=,求BE2+DG2的值. 【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25. 【解析】 分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系; ②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论; (2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立; (3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和. 详解:(1)①BG⊥DE,BG=DE; ②∵四边形ABCD和四边形CEFG是正方形, ∴BC=DC,CG=CE,∠BCD=∠ECG=90°, ∴∠BCG=∠DCE, ∴△BCG≌△DCE, ∴BG=DE,∠CBG=∠CDE, 又∵∠CBG+∠BHC=90°, ∴∠CDE+∠DHG=90°, ∴BG⊥DE. (2)∵AB=a,BC=b,CE=ka,CG=kb, ∴, 又∵∠BCG=∠DCE, ∴△BCG∽△DCE, ∴∠CBG=∠CDE, 又∵∠CBG+∠BHC=90°, ∴∠CDE+∠DHG=90°, ∴BG⊥DE. (3)连接BE、DG. 根据题意,得AB=3,BC=2,CE=1.5,CG=1, ∵BG⊥DE,∠BCD=∠ECG=90° ∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25. 点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理. 2.(1)、动手操作: 如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 . (2)、观察发现: 小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由. (3)、实践与运用: 将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小. 【答案】(1)125°;(2)同意;(3)60° 【解析】 试题分析:(1)根据直角三角形的两个锐角互余求得∠AEB=70°,根据折叠重合的角相等,得∠BEF=∠DEF=55°,根据平行线的性质得到∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°; (2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形; (3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可. 试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°, ∴∠AEB=70°, ∴∠BED=110°, 根据折叠重合的角相等,得∠BEF=∠DEF=55°. ∵AD∥BC, ∴∠EFC=125°, 再根据折叠的性质得到∠EFC′=∠EFC=125°.; (2)、同意,如图,设AD与EF交于点G 由折叠知,AD平分∠BAC,所以∠BAD=∠CAD. 由折叠知,∠AGE=∠DGE=90°, 所以∠AGE=∠AGF=90°, 所以∠AEF=∠AFE. 所以AE=AF, 即△AEF为等腰三角形. (3)、由题意得出:∠NMF=∠AMN=∠MNF, ∴MF=NF, 由折叠可知,MF=PF, ∴NF=PF, 而由题意得出:MP=MN, 又∵MF=MF, ∴△MNF≌△MPF, ∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°, 即3∠MNF=180°, ∴∠MNF=60°. 考点:1.折叠的性质;2.等边三角形的性质;3.全等三角形的判定和性质;4.等腰三角形的判定 3.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H. (1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明; (2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG; (3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数. 【答案】(1)①证明见解析;②AG⊥BE.理由见解析;(2)证明见解析;(3)∠BHO=45°. 【解析】 试题分析:(1)①根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;②根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE; (2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立; (3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,所以HO平分∠BHG,即∠BHO=45°. 试题解析:(1)①∵四边形ABCD为正方形, ∴DA=DC,∠ADB=∠CDB=45°, 在△ADG和△CDG中 , ∴△ADG≌△CDG(SAS), ∴∠DAG=∠DCG; ②AG⊥BE.理由如下: ∵四边形ABCD为正方形, ∴AB=DC,∠BAD=∠CDA=90°, 在△ABE和△DCF中 , ∴△ABE≌△DCF(SAS), ∴∠ABE=∠DCF, ∵∠DAG=∠DCG, ∴∠DAG=∠ABE, ∵∠DAG+∠BAG=90°, ∴∠ABE+∠BAG=90°, ∴∠AHB=90°, ∴AG⊥BE; (2)由(1)可知AG⊥BE. 如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形. ∴∠MON=90°, 又∵OA⊥OB, ∴∠AON=∠BOM. ∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°, ∴∠OAN=∠OBM. 在△AON与△BOM中, ∴△AON≌△BOM(AAS). ∴OM=ON, ∴矩形OMHN为正方形, ∴HO平分∠BHG. (3)将图形补充完整,如答图2示,∠BHO=45°. 与(1)同理,可以证明AG⊥BE. 过点O作OM⊥BE于点M,ON⊥AG于点N, 与(2)同理,可以证明△AON≌△BOM, 可得OMHN为正方形,所以HO平分∠BHG, ∴∠BHO=45°. 考点:1、四边形综合题;2、全等三角形的判定与性质;3、正方形的性质 4.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3). (1)当点N落在边BC上时,求t的值. (2)当点N到点A、B的距离相等时,求t的值. (3)当点Q沿D→B运动时,求S与t之间的函数表达式. (4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF与四边形PQMN的面积比为2:3时t的值. 【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或 【解析】 试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3; (2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ; (3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN. (4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值. 试题解析:(1)∵△PQN与△ABC都是等边三角形, ∴当点N落在边BC上时,点Q与点B重合. ∴DQ=3 ∴2t=3. ∴t=; (2)∵当点N到点A、B的距离相等时,点N在边AB的中线上, ∴PD=DQ, 当0<t<时, 此时,PD=t,DQ=2t ∴t=2t ∴t=0(不合题意,舍去), 当≤t<3时, 此时,PD=t,DQ=6﹣2t ∴t=6﹣2t, 解得t=2; 综上所述,当点N到点A、B的距离相等时,t=2; (3)由题意知:此时,PD=t,DQ=2t 当点M在BC边上时, ∴MN=BQ ∵PQ=MN=3t,BQ=3﹣2t ∴3t=3﹣2t ∴解得t= 如图①,当0≤t≤时, S△PNQ=PQ2=t2; ∴S=S菱形PQMN=2S△PNQ=t2, 如图②,当≤t≤时, 设MN、MQ与边BC的交点分别是E、F, ∵MN=PQ=3t,NE=BQ=3﹣2t, ∴ME=MN﹣NE=PQ﹣BQ=5t﹣3, ∵△EMF是等边三角形, ∴S△EMF=ME2=(5t﹣3)2 . ; (4)MN、MQ与边BC的交点分别是E、F, 此时<t<, t=1或. 考点:几何变换综合题 5.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°. (1)求证:四边形ABCD是矩形. (2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数. 【答案】(1)见解析;(2)18°. 【解析】 【分析】 (1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可; (2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案. 【详解】 (1)证明:∵AO=CO,BO=DO ∴四边形ABCD是平行四边形, ∴∠ABC=∠ADC, ∵∠ABC+∠ADC=180°, ∴∠ABC=∠ADC=90°, ∴四边形ABCD是矩形; (2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2, ∴∠FDC=36°, ∵DF⊥AC, ∴∠DCO=90°﹣36°=54°, ∵四边形ABCD是矩形, ∴OC=OD, ∴∠ODC=54° ∴∠BDF=∠ODC﹣∠FDC=18°. 【点睛】 本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形. 6.已知AD是△ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M; (1)如图1,当AB=AC时,求证:四边形EGHF是矩形; (2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身). 【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH. 【解析】 【分析】 (1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,推出EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论; (2)由△APE与△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF的底AF=CF,又等高,得出S△APF=S△CPF,证得△PGH底边GH上的高等于△AEF底边EF上高的一半,推出S△PGH=S△AEF=S△APF,即可得出结果. 【详解】 (1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点, ∴EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC, ∴EF∥GH,EF=GH, ∴四边形EGHF是平行四边形, ∵AB=AC, ∴AD⊥BC, ∴EF⊥AP, ∵EG∥AP, ∴EF⊥EG, ∴平行四边形EGHF是矩形; (2)∵PE是△APB的中线, ∴△APE与△BPE的底AE=BE,又等高, ∴S△APE=S△BPE, ∵AP是△AEF的中线, ∴△APE与△APF的底EP=FP,又等高, ∴S△APE=S△APF, ∴S△APF=S△BPE, ∵PF是△APC的中线, ∴△APF与△CPF的底AF=CF,又等高, ∴S△APF=S△CPF, ∴S△CPF=S△BPE, ∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC的中点, ∴△AEF底边EF上的高等于△ABC底边BC上高的一半,△PGH底边GH上的高等于△PBC底边BC上高的一半, ∴△PGH底边GH上的高等于△AEF底边EF上高的一半, ∵GH=EF, ∴S△PGH=S△AEF=S△APF, 综上所述,与△BPE面积相等的三角形为:△APE、△APF、△CPF、△PGH. 【点睛】 本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键. 7.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF. 【答案】见解析. 【解析】 【分析】 延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF. 【详解】 延长BF,交DA的延长线于点M,连接BD. ∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM. ∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD. ∵CE=AC,∴AC=CE= BD =DM. ∵FB=FM,∴BF⊥DF. 【点睛】 本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键. 8.已知,点是的角平分线上的任意一点,现有一个直角绕点旋转,两直角边,分别与直线,相交于点,点. (1)如图1,若,猜想线段,,之间的数量关系,并说明理由. (2)如图2,若点在射线上,且与不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段,,之间的数量关系,并加以证明. (3)如图3,若点在射线的反向延长线上,且,,请直接写出线段的长度. 【答案】(1)详见解析;(2)详见解析;(3) 【解析】 【分析】 (1)先证四边形为矩形,再证矩形为正方形,由正方形性质可得;(2)过点作于点,于点,证四边形为正方形,再证,可得;(3)根据,可得. 【详解】 解:(1)∵,,, ∴四边形为矩形. ∵是的角平分线, ∴, ∴, ∴矩形为正方形, ∴,. ∴. (2)如图,过点作于点,于点, ∵平分,, ∴四边形为正方形, 由(1)得:, 在和中, , ∴, ∴, ∴. (3), , ∴. ∵,, ∴, ∴, ∴, 的长度为. 【点睛】 考核知识点:矩形,正方形的判定和性质.熟练运用特殊四边形的性质和判定是关键. 9.如图①,在矩形中,点从边的中点出发,沿着速运动,速度为每秒2个单位长度,到达点后停止运动,点是上的点,,设的面积为,点运动的时间为秒,与的函数关系如图②所示. (1)图①中= ,= ,图②中= . (2)当=1秒时,试判断以为直径的圆是否与边相切?请说明理由: (3)点在运动过程中,将矩形沿所在直线折叠,则为何值时,折叠后顶点的对应点落在矩形的一边上. 【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=、5、. 【解析】 【分析】 (1)由题意得出AB=2BE,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P在E处,m=△AEQ的面积=AQ×AE=20即可; (2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出PQ=2,设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,则MN=AB=8,O'M∥AB,MN=AB=8,由三角形中位线定理得出O'M=AP=3,求出O'N=MN-O'M=5<圆O'的半径,即可得出结论; (3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,则QF=AB=8,BF=AQ=10,由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出A'F==6,得出A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得出方程,解方程即可; ②当点P在BC边上,A'落在BC边上时,由折叠的性质得:A'P=AP,证出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可; ③当点P在BC边上,A'落在CD边上时,由折叠的性质得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可. 【详解】 (1)∵点P从AB边的中点E出发,速度为每秒2个单位长度, ∴AB=2BE, 由图象得:t=2时,BE=2×2=4, ∴AB=2BE=8,AE=BE=4, t=11时,2t=22, ∴BC=22-4=18, 当t=0时,点P在E处,m=△AEQ的面积=AQ×AE=×10×4=20; 故答案为8,18,20; (2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下: 当t=1时,PE=2, ∴AP=AE+PE=4+2=6, ∵四边形ABCD是矩形, ∴∠A=90°, ∴PQ=, 设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示: 则MN=AB=8,O'M∥AB,MN=AB=8, ∵O'为PQ的中点, ∴O''M是△APQ的中位线, ∴O'M=AP=3, ∴O'N=MN-O'M=5<, ∴以PQ为直径的圆不与BC边相切; (3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示: 则QF=AB=8,BF=AQ=10, ∵四边形ABCD是矩形, ∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18, 由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°, ∴A'F==6, ∴A'B=BF-A'F=4, 在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t, 由勾股定理得:42+(4-2t)2=(4+2t)2, 解得:t=; ②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示: 由折叠的性质得:A'P=AP, ∴∠APQ'=∠A'PQ, ∵AD∥BC, ∴∠AQP=∠A'PQ, ∴∠APQ=∠AQP, ∴AP=AQ=A'P=10, 在Rt△ABP中,由勾股定理得:BP==6, 又∵BP=2t-4, ∴2t-4=6,解得:t=5; ③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示: 由折叠的性质得:A'P=AP,A'Q=AQ=10, 在Rt△DQA'中,DQ=AD-AQ=8, 由勾股定理得:DA'==6, ∴A'C=CD-DA'=2, 在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t, 由勾股定理得:AP2=82+(2t-4)2,A'P2=22+(22-2t)2, ∴82+(2t-4)2=22+(22-2t)2, 解得:t=; 综上所述,t为或5或时,折叠后顶点A的对应点A′落在矩形的一边上. 【点睛】 四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识. 10.在平面直角坐标系中,O为原点,点A(﹣6,0)、点C(0,6),若正方形OABC绕点O顺时针旋转,得正方形OA′B′C′,记旋转角为α: (1)如图①,当α=45°时,求BC与A′B′的交点D的坐标; (2)如图②,当α=60°时,求点B′的坐标; (3)若P为线段BC′的中点,求AP长的取值范围(直接写出结果即可). 【答案】(1);(2);(3). 【解析】 【分析】 (1)当α=45°时,延长OA′经过点B,在Rt△BA′D中,∠OBC=45°,A′B=,可求得BD的长,进而求得CD的长,即可得出点D的坐标; (2)过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,证明△OMC′≌△C′NB′,可得C′N=OM=,B′N=C′M=3,即可得出点B′的坐标; (3)连接OB,AC相交于点K,则K是OB的中点,因为P为线段BC′的中点,所以PK=OC′=3,即点P在以K为圆心,3为半径的圆上运动,即可得出AP长的取值范围. 【详解】 解:(1)∵A(﹣6,0)、C(0,6),O(0,0), ∴四边形OABC是边长为6的正方形, 当α=45°时, 如图①,延长OA′经过点B, ∵OB=6,OA′=OA=6,∠OBC=45°, ∴A′B=, ∴BD=()×, ∴CD=6﹣()=, ∴BC与A′B′的交点D的坐标为(,6); (2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N, ∵∠OC′B′=90°, ∴∠OC′M=90°﹣∠B′C′N=∠C′B′N, ∵OC′=B′C′,∠OMC′=∠C′NB′=90°, ∴△OMC′≌△C′NB′(AAS), 当α=60°时, ∵∠A′OC′=90°,OC′=6, ∴∠C′OM=30°, ∴C′N=OM=,B′N=C′M=3, ∴点B′的坐标为; (3)如图③,连接OB,AC相交于点K, 则K是OB的中点, ∵P为线段BC′的中点, ∴PK=OC′=3, ∴P在以K为圆心,3为半径的圆上运动, ∵AK=3, ∴AP最大值为,AP的最小值为, ∴AP长的取值范围为. 【点睛】 本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P的轨迹. 11.(1)问题发现 如图1,点E. F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由; (2)类比引申 如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系 时,仍有EF=BE+DF; (3)联想拓展 如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC满足的等量关系,并写出推理过程。 【答案】(1)详见解析;(2)详见解析;(3)详见解析. 【解析】 试题分析:(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AFG≌△AFE,根据全等三角形的性质得出EF=FG,即可得出答案; (2)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AFE≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案; (3)把△ACE旋转到ABF的位置,连接DF,证明△AFE≌△AFG(SAS),则EF=FG,∠C=∠ABF=45°,△BDF是直角三角形,根据勾股定理即可作出判断. 试题解析:(1)理由是:如图1, ∵AB=AD, ∴把△ABE绕点A逆时针旋转90∘至△ADG,可使AB与AD重合,如图1, ∵∠ADC=∠B=90∘, ∴∠FDG=180∘,点F. D. G共线, 则∠DAG=∠BAE,AE=AG, ∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90∘−45∘=45∘=∠EAF, 即∠EAF=∠FAG, 在△EAF和△GAF中, AF=AF,∠EAF=∠GAF,AE=AG, ∴△AFG≌△AFE(SAS), ∴EF=FG=BE+DF; (2)∠B+∠D=180∘时,EF=BE+DF; ∵AB=AD, ∴把△ABE绕点A逆时针旋转90∘至△ADG,可使AB与AD重合,如图2, ∴∠BAE=∠DAG, ∵∠BAD=90∘,∠EAF=45∘, ∴∠BAE+∠DAF=45∘, ∴∠EAF=∠FAG, ∵∠ADC+∠B=180∘, ∴∠FDG=180∘,点F. D. G共线, 在△AFE和△AFG中, AE=AG,∠FAE=∠FAG,AF=AF, ∴△AFE≌△AFG(SAS), ∴EF=FG, 即:EF=BE+DF, 故答案为:∠B+∠ADC=180∘; (3)BD2+CE2=DE2. 理由是:把△ACE旋转到ABF的位置,连接DF, 则∠FAB=∠CAE. ∵∠BAC=90∘,∠DAE=45∘, ∴∠BAD+∠CAE=45∘, 又∵∠FAB=∠CAE, ∴∠FAD=∠DAE=45∘, 则在△ADF和△ADE中, AD=AD,∠FAD=∠DAE,AF=AE, ∴△ADF≌△ADE, ∴DF=DE,∠C=∠ABF=45∘, ∴∠BDF=90∘, ∴△BDF是直角三角形, ∴BD2+BF2=DF2, ∴BD2+CE2=DE2. 12.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG. (1)求证:四边形DEFG为菱形; (2)若CD=8,CF=4,求的值. 【答案】(1)证明见试题解析;(2). 【解析】 试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形; (2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值. 试题解析:(1)由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形; (2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=. 考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题. 13.如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度的速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF为边向上作等边三角形EFG,设点E的运动时间为t秒,△EFG和△AHC的重合部分面积为S. (1)CE= (含t的代数式表示). (2)求点G落在线段AC上时t的值. (3)当S>0时,求S与t之间的函数关系式. (4)点P在点E出发的同时从点A出发沿A-H-A以每秒2个单位长度的速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t的取值范围. 【答案】(1)6-2t;(2)t=2;(3)当<t≤2时,S=t2+t-3;当2<t≤3时,S=-t2+t-;(4)<t<. 【解析】 试题分析:(1)由菱形的性质得出BC=AB=6得出CE=BC-BE=6-2t即可; (2)由菱形的性质和已知条件得出△ABC是等边三角形,得出∠ACB=60°,由等边三角形的性质和三角函数得出∠GEF=60°,GE=EF=BE•sin60°=t,证出∠GEC=90°,由三角函数求出CE==t,由BE+CE=BC得出方程,解方程即可; (3)分两种情况:①当<t≤2时,S=△EFG的面积-△NFN的面积,即可得出结果; ②当2<t≤3时,由①的结果容易得出结论; (4)由题意得出t=时,点P与H重合,E与H重合,得出点P在△EFG内部时,t的不等式,解不等式即可. 试题解析:(1)根据题意得:BE=2t, ∵四边形ABCD是菱形, ∴BC=AB=6, ∴CE=BC-BE=6-2t; (2)点G落在线段AC上时,如图1所示: ∵四边形ABCD是菱形, ∴AB=BC, ∵∠ABC=60°, ∴△ABC是等边三角形, ∴∠ACB=60°, ∵△EFG是等边三角形, ∴∠GEF=60°,GE=EF=BE•sin60°=t, ∵EF⊥AB, ∴∠BEF=90°-60°=30°, ∴∠GEB=90°, ∴∠GEC=90°, ∴CE==t, ∵BE+CE=BC, ∴2t+t=6, 解得:t=2; (3)分两种情况:①当<t≤2时,如图2所示: S=△EFG的面积-△NFN的面积=××(t)2-××(-+2)2=t2+t-3, 即S=t2+t-3; 当2<t≤3时,如图3所示: S=t2+t-3-(3t-6)2, 即S=-t2+t-; (4)∵AH=AB•sin60°=6×=3,3÷2=,3÷2=, ∴t=时,点P与H重合,E与H重合, ∴点P在△EFG内部时,-<(t-)×2<t-(2t-3)+(2t-3), 解得:<t<; 即点P在△EFG内部时t的取值范围为:<t<. 考点:四边形综合题. 14.已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N. (1)求证:△ABM≌△CDN; (2)矩形ABCD和矩形AECF满足何种关系时,四边形 AMCN是菱形,证明你的结论. 【答案】(1)证明见解析;(2)当AB=AF时,四边形AMCN是菱形.证明见解析; 【解析】 试题分析:(1)由已知条件可得四边形AMCN是平行四边形,从而可得AM=CN,再由AB=CD,∠B=∠D=90°,利用HL即可证明; (2)若四边形AMCN为菱形,则有AM=AN,从已知可得∠BAM=∠FAN,又∠B=∠F=90°,所以有△ABM≌△AFN,从而得AB=AF,因此当AB=AF时,四边形AMCN是菱形. 试题解析:(1)∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD∥BC. ∵四边形AECF是矩形,∴AE∥CF.∴四边形AMCN是平行四边形.∴AM=CN.在Rt△ABM和Rt△CDN中,AB=CD,AM=CN,∴Rt△ABM≌Rt△CDN. (2)当AB=AF时,四边形AMCN是菱形. ∵四边形ABCD、AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90°.∴∠BAD-∠NAM=∠EAF-∠NAM,即∠BAM=∠FAN.又∵AB=AF,∴△ABM≌△AFN.∴AM=AN.由(1)知四边形AMCN是平行四边形,∴平行四边形AMCN是菱形. 考点:1.矩形的性质;2.三角形全等的判定与性质;3.菱形的判定. 15.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处. (1)求矩形ABCD的边AD的长. (2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围. (3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值; ②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式 【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=. 【解析】 试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式. 试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3. (2)由折叠可知AM=MP,在Rt△MPD中, ∴∴y=-其中,0<x<3. (3)当点N在AB上,x≥3, ∴PC≤3,而PN≥3,NC≥3. ∴△PCN为等腰三角形,只可能NC=NP. 过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中, ∴解得x=. (4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形. 设MP=y,在Rt△ADM中,,即∴ y=. ∴ S= 考点:函数的性质、勾股定理.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 平行四边形 经典 压轴 答案 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文