八年级数学上册压轴题综合试题附答案.doc
《八年级数学上册压轴题综合试题附答案.doc》由会员分享,可在线阅读,更多相关《八年级数学上册压轴题综合试题附答案.doc(20页珍藏版)》请在咨信网上搜索。
八年级数学上册压轴题综合试题附答案 1、在Rt△中,,∠,点是上一点. (1)如图,平分∠,求证; (2)如图,点在线段上,且∠,∠,求证; (3)如图3,BM⊥AM,M是△ABC的中线AD延长线上一点,N在AD上,AN=BM,若DM=2,则MN= (直接写出结果). 2、如图①,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点. (1)若+b2-10b+25=0,判断△AOB的形状,并说明理由; (2)如图②,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,MN=7,求BN的长; (3)如图③,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围. 3、已知ABC中,∠BAC=60°,以AB和BC为边向外作等边ABD和等边BCE. (1)连接AE、CD,如图1,求证:AE=CD; (2)若N为CD中点,连接AN,如图2,求证:CE=2AN (3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=_______(直接写出结果) 4、在等腰三角形ABC中,AB=AC,点D是AC上一动点,在BD的延长线上取一点E满足:AE=AB;AF平分∠CAE交BE于点F. (1)如图1,连CF,求证:△ACF≌△AEF. (2)如图2,当∠ABC=60°时,线段AF,EF,BF之间存在某种数量关系,写出你的结论并加以证明. (3)如图3,当∠ACB=45°时,且AE∥BC,若EF=3,请直接写出线段BD的长是 (只填写结果). 5、如图,和中,,,,边与边交于点(不与点,重合),点,在异侧,为与的角平分线的交点. (1)求证:; (2)设,请用含的式子表示,并求的最大值; (3)当时,的取值范围为,求出,的值. 6、已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,AC=CD,∠ACD=90°. (1)已知a,b满足等式|a +b|+b2+4b=-3、 ①求A点和B点的坐标; ②如图1,连BD交y轴于点H,求点H的坐标; (2)如图2,已知a+b=0,OC>OB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论. 7、在△ABC中,∠ACB=90°,过点C作直线l∥AB,点B与点D关于直线l对称,连接BD交直线于点P,连接CD.点E是AC上一动点,点F是CD上一动点,点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.点F从D点出发,以每秒2cm的速度沿D→C→B→C→D路径运动,终点为D.点E、F同时开始运动,第一个点到达终点时第二个点也停止运动. (1)当AC=BC时,试证明A、C、D三点共线;(温馨提示:证明∠ACD是平角) (2)若AC=10cm,BC=7cm,设运动时间为t秒,当点F沿D→C方向时,求满足CE=2CF时t的值; (3)若AC=10cm,BC=7cm,过点E、F分别作EM、FN垂直直线l于点M、N,求所有使△CEM≌△CFN成立的t的值. 8、如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明. (1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程; (2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明). 【参考答案】 1、(1)见解析 (2)见解析 (3)8 【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题. (2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△ACE≌△ 【解析】(1)见解析 (2)见解析 (3)8 【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题. (2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△ACE≌△BCM(SAS),推出AE=BM,再利用直角三角形30度角的性质即可解决问题. (3)如图3中,作CH⊥MN于H.证明得到,进一步证明即可解决问题. (1) 证明:如图1中,作DH⊥AB于H. ∵∠ACD=∠AHD=90°,AD=AD,∠DAC=∠DAH, ∴△ADC≌△ADH(ASA), ∴AC=AH,DC=DH, ∵CA=CB,∠C=90°, ∴∠B=45°, ∵∠DHB=90°, ∴∠HDB=∠B=45°, ∴HD=HB, ∴BH=CD, ∴AB=AH+BH=AC+CD. (2) 如图2中,作CM⊥CE交AD的延长线于M,连接BM. , , , , , ∵∠ACB=∠ECM=90°, , , ∵CA=CB,CE=CM, ∴△ACE≌△BCM(SAS), ∴AE=BM, ∵在Rt△EMB中,∠MEB=30°, ∴BE=2BM=2AE. (3) 解:如图3中,作CH⊥MN于H. , , , , , , , ,, , , , , 是的中线, , ,, , , , . 【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 2、(1)△AOB为等腰直角三角形;理由见解析 (2)BN=3 (3)PB的长为定值; 【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状; (2)由OA= 【解析】(1)△AOB为等腰直角三角形;理由见解析 (2)BN=3 (3)PB的长为定值; 【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状; (2)由OA=OB,利用AAS得到△AMO≌△ONB,用对应线段相等求长度; (3)如图,作EK⊥y轴于K点,利用AAS得到△AOB≌△BKE,利用全等三角形对应边相等得到OA=BK,EK=OB,再利用AAS得到△PBF≌△PKE,寻找相等线段,并进行转化,求PB的长. (1) 解:结论:△OAB是等腰直角三角形;理由如下: ∵+b2-10b+25=0,即, ∴,解得:, ∴A(−5,0),B(0,5), ∴OA=OB=5, ∴△AOB是等腰直角三角形. (2) 解:∵AM⊥OQ,BN⊥OQ, ∴, , ∴, ∴, ∵在△AMO与△ONB中, ∴△AMO≌△ONB(AAS), ∴AM=ON=4,BN=OM, ∵MN=7, ∴OM=3, ∴BN=OM=2、 (3) 解:结论:PB的长为定值.理由如下, 作EK⊥y轴于K点,如图所示: ∵△ABE为等腰直角三角形, ∴AB=BE,∠ABE=90°, ∴∠EBK+∠ABO=90°, ∵∠EBK+∠BEK=90°, ∴∠ABO=∠BEK, ∵在△AOB和△BKE中, ∴△AOB≌△BKE(AAS), ∴OA=BK,EK=OB, ∵△OBF为等腰直角三角形, ∴OB=BF, ∴EK=BF, ∵在△EKP和△FBP中, ∴△PBF≌△PKE(AAS), ∴PK=PB, ∴PB=BK=OA=. 【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键. 3、(1)见解析 (2)见解析 (3) 【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论; (2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而 【解析】(1)见解析 (2)见解析 (3) 【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论; (2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC=∠ACF,即可判断出△ABC≌△CFA,即可得出结论; (3)先判断出△ABC≌△HEB(ASA),得出,,再判断出△ADM≌△HEM (AAS),得出AM=HM,即可得出结论. (1) 解:∵△ABD和△BCE是等边三角形, ∴BD=AB,BC=BE,∠ABD=∠CBE=60°, ∴∠ABD+∠ABC=∠CBE+∠ABC, ∴∠DBC=∠ABE, ∴△ABE≌△DBC(SAS), ∴AE=CD; (2) 解:如图,延长AN使NF=AN,连接FC, ∵N为CD中点, ∴DN=CN, ∵∠AND=∠FNC, ∴△ADN≌△FCN(SAS), ∴CF=AD,∠NCF=∠AND, ∵∠DAB=∠BAC=60° ∴∠ACD +∠ADN=60° ∴∠ACF=∠ACD+∠NCF=60°, ∴∠BAC=∠ACF, ∵△ABD是等边三角形, ∴AB=AD, ∴AB=CF, ∵AC=CA, ∴△ABC≌△CFA (SAS), ∴BC=AF, ∵△BCE是等边三角形, ∴CE=BC=AF=2AN; (3) 解: ∵△ABD是等边三角形, ∴,∠BAD=60°, 在Rt△ABC中,∠ACB=90°-∠BAC=30°, ∴, 如图,过点E作EH // AD交AM的延长线于H, ∴∠H=∠BAD=60°, ∵△BCE是等边三角形, ∴BC=BE,∠CBE=60°, ∵∠ABC=90°, ∴∠EBH=90°-∠CBE=30°=∠ACB, ∴∠BEH=180°-∠EBH-∠H=90°=∠ABC, ∴△ABC≌△HEB (ASA), ∴,, ∴AD=EH, ∵∠AMD=∠HME, ∴△ADM≌△HEM (AAS), ∴AM=HM, ∴ ∵,, ∴. 故答案为:. 【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键. 4、(1)证明见解析 (2),证明见解析 (3)6 【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明; (2)在BE上截取BM=CF,连接AM.由所作辅助 【解析】(1)证明见解析 (2),证明见解析 (3)6 【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明; (2)在BE上截取BM=CF,连接AM.由所作辅助线易证,得出,.由题意易判断为等边三角形,即可求出,即说明为等边三角形,得出,由此即得出; (3)延长BA,CF交于点N.由题意可知为等腰直角三角形,即,.根据平行线的性质和等边对等角即得出BE为的角平分线,从而可求出,进而可求出.由角平分线的性质可得出,从而可求出.又易证,即得出. (1) ∵AF平分∠CAE, ∴. ∵AB=AC,AB=AE, ∴AC =AE. 又∵AF=AF, ∴. (2) 证明:∵, ∴,. 如图,在BE上截取BM=CF,连接AM. 在和中,, ∴, ∴,. ∵,, ∴为等边三角形, ∴. ∵, ∴,即, ∴为等边三角形, ∴, ∴. 即AF,EF,BF之间存在的关系为:; (3) 如图,延长BA,CF交于点N. ∵,, ∴为等腰直角三角形, ∴,. ∵AE∥BC, ∴. ∵, ∴, ∴. 由(1)可知, ∴, ∴,即. ∵为的角平分线, ∴. ∵, ∴,即. 在和中,, ∴, ∴. 故答案为:5、 【点睛】本题为三角形综合题,考查等边三角形的判定和性质,等腰直角三角形的判定和性质,三角形全等的判定和性质,角平分线的定义和性质,平行线的性质以及三角形内角和定理,综合性强,较难.解题关键是学会添加常用的辅助线,构造全等三角形解决问题. 5、(1)见解析 (2),3 (3)m=105,n=150 【分析】(1)由条件易证,得,即可得证. (2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥BC时A 【解析】(1)见解析 (2),3 (3)m=105,n=150 【分析】(1)由条件易证,得,即可得证. (2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥BC时AP的长度,此时PD可得最大值. (3)为与的角平分线的交点,应用“三角形内角和等于180°”及角平分线定义,即可表示出,从而得到m,n的值. (1) 解:在和中,如图1 即 (2) 解: 当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值 (3) 解:如图2,设则 为与的角平分线的交点 即 【点睛】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30°的角所对的直角边等于斜边的一半,全等三角形的判定和性质,角平分线定义等,解题关键是将PD最大值转化为PA的最小值. 6、(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析. 【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案; ②过C作y轴垂 【解析】(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析. 【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案; ②过C作y轴垂线交BA的延长线于E,然后证明△CEA≌△CBD,得到OB=OH,即可得到答案; (2)由题意,先证明△DFG≌△EFO,然后证明△DCG≌△ACO,得到△OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立. 【详解】解:(1)∵, ∴, ∴, ∴,, ∴, ∴, ∴A(0,2),B(2,0); ②过C作x轴垂线交BA的延长线于E, ∵OA=OB=2,∠AOB=90°, ∴△AOB是等腰直角三角形, ∴∠ABO=45°, ∵EC⊥BC, ∴△BCE是等腰直角三角形, ∴BC=EC,∠BCE=90°=∠ACD, ∴∠ACE=∠DCB, ∵AC=DC, ∴△CEA≌△CBD, ∴∠CBD=∠E=45°, ∴OH=OB=2, ∴H(0,2); (2)补全图形,如图: ∵点B、E关于y轴对称, ∴OB=OE, ∵a+b=0,即 ∴OA=OB=OE 延长OF至G使FG=OF,连DG,CG, ∵OF=FG,∠OFE=∠DFG,EF=DF ∴△DFG≌△EFO ∴DG=OE=OA,∠DGF=∠EOF ∴DG∥OE ∴∠CDG=∠DCO; ∵∠ACO+∠CAO=∠ACO+∠DCO=90°, ∴∠DCO=∠CAO; ∴∠CDG=∠DCO=∠CAO; ∵CD=AC,OA=DG ∴△DCG≌△ACO ∴OC=GC,∠DCG=∠ACO ∴∠OCG=90°, ∴∠COF=45°, ∴△OCG是等腰直角三角形, 由三线合一定理得CF⊥OF ∵∠OCF=∠COF=45°, ∴CF=OF; 【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题. 7、(1)见解析 (2) (3) 【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=180°, 【解析】(1)见解析 (2) (3) 【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=180°,即A、C、D三点共线; (2)先用含有t的式子表示CE和CF的长,然后根据CE=2CF列出方程求得t的值; (3)先由∠BCP=∠FCN、∠BCP+∠ECM=90°,∠ECM+∠MEC=90°得到∠MEC=∠FCN,然后结合全等三角形的性质列出方程求得t的值. (1) 证明:∵AC=BC,∠ACB=90°, ∴∠ABC=45°, ∵点B与点D关于直线l对称, ∴BD⊥直线l,BC=CD, ∵直线l∥AB, ∴BD⊥AB, ∴∠ABD=90°, ∴∠CBD=∠CDB=45°, ∴∠BCD=90°, ∴∠ACB+∠BCD=180°, ∴A、C、D三点共线; (2) 解:∵AC=10cm,BC=7cm, ∴当点F沿D→C方向时,0≤t≤3.5, ∴CE=10-t,CF=7-2t, ∵CE=2CF, ∴10-t=2(7-2t), 解得:t=. (3) 解:∵∠BCP=∠FCN,∠BCP+∠ECM=90°,∠ECM+∠MEC=90°, ∴∠MEC=∠FCN, ∵△CEM≌△CFN, 当CE=CF时,△CEM≌△CFN, 当点F沿D→C路径运动时, 10-t=7-2t, 解得,t=-3,不合题意, 当点F沿C→B路径运动时, 10-t=2t-7, 解得,t=, 当点F沿B→C路径运动时, 10-t=7-(2t-7×2), 解得,t=11, ∵第一个点到达终点时第二个点也停止运动.点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.AC=10, ∴0≤t≤10, ∴t=11时,已停止运动. 综上所述,当t=秒时,△CEM≌△CFN. 【点睛】本题是三角形综合题目,考查的是全等三角形的判定和性质、等腰三角形的性质、等腰直角三角形的性质等知识,掌握全等三角形的判定定理和性质定理,灵活运用分类讨论思想是解题的关键. 8、(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BD 【解析】(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC. (2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论. 【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE. ∵△BDC为等腰三角形,△ABC为等边三角形, ∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°, 又BD=DC,且∠BDC=120°, ∴∠DBC=∠DCB=30° ∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°, ∴∠MBD=∠ECD=90°, 在△MBD与△ECD中, ∵ , ∴△MBD≌△ECD(SAS), ∴MD=DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△DMN与△DEN中, ∵ , ∴△DMN≌△DEN(SAS), ∴MN=NE=CE+NC=BM+NC. (2)如图②中,结论:MN=NC﹣BM. 理由:在CA上截取CE=BM. ∵△ABC是正三角形, ∴∠ACB=∠ABC=60°, 又∵BD=CD,∠BDC=120°, ∴∠BCD=∠CBD=30°, ∴∠MBD=∠DCE=90°, 在△BMD和△CED中 ∵ , ∴△BMD≌△CED(SAS), ∴DM= DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△MDN和△EDN中 ∵ , ∴△MDN≌△EDN(SAS), ∴MN =NE=NC﹣CE=NC﹣BM. 【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 上册 压轴 综合 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文