常州外国语学校七年级数学上册期末压轴题汇编.doc
《常州外国语学校七年级数学上册期末压轴题汇编.doc》由会员分享,可在线阅读,更多相关《常州外国语学校七年级数学上册期末压轴题汇编.doc(37页珍藏版)》请在咨信网上搜索。
常州外国语学校七年级数学上册期末压轴题汇编 一、七年级上册数学压轴题 1.如图,在数轴上,点O是原点,点A,B是数轴上的点,已知点A对应的数是a,点B对应的数是b,且a,b满足. (1)在数轴上标出点A,B的位置. (2)在数轴上有一个点C,满足,则点C对应的数为________. (3)动点P,Q分别从A,B同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动设运动时间为t秒(). ①当为何值时,原点O恰好为线段PQ的中点. ②若M为AP的中点,点N在线段BQ上,且,若时,请直接写出t的值. 2.如图,在数轴上点A表示的数是-3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B之间,且到点B的距离是到点A距离的2倍. (1)点B表示的数是;点C表示的数是; (2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,当P运动到C点时,点Q与点B的距离是多少? (3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB.在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由. 3.阅读下面的材料并解答问题: 点表示数,点表示数,点表示数,且点到点的距离记为线段的长,线段的长可以用右边的数减去左边的数表示,即. 若是最小的正整数,且满足. (1)_________,__________. (2)若将数轴折叠,使得与点重合: ①点与数_________表示的点重合; ②若数轴上两点之间的距离为2018(在的左侧),且两点经折叠后重合,则两点表示的数是_______、__________. (3)点开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为秒,试探索:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出其值. 4.已知:a是最大的负整数,且a、b满足|c-7|+(2a+b)2=0,请回答问题: (1)请直接写出a、b、c的值:a =_____,b =_____,c =_____; (2)数a、b、c所对应的点分别为A、B、C,已知数轴上两点间的距离为这两点所表示的数的差的绝对值(或用这两点所表示的数中较大的数减去较小的数),若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC-AB的值; (3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,则经过t秒钟时,请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由,若不变,请求其值. 5.数轴上有三点,给出如下定义;若其中一个点与其他两个点的距离恰好满足倍的数量关系,则称该点是其它两个点的:“关联点” (1)例图,数轴上点三点所表示的数分别为,点到点的距离 ,点到点的距离是 ,因为是的两倍,所以称点是点的“关联点”. (2)若点表示数点表示数,下列各数所对应的点分别是,其中是点的“关联点”的是 ; (3)点表示数,点表示数为数轴上一个动点;若点在点的左侧,且点是点的“关联点”,求此时点表示的数;若点在点的右侧,点中,有一个点恰好是其它两个点的“关联点”.请直接写出此时点表示的数 6.已知数轴上三点,,对应的数分别为,0,3,点为数轴上任意一点,其对应的数为. (1)如果点到点、点的距离相等,那么的值是______. (2)数轴上是否存在点,使点到点、点的距离之和是8?若存在,求出的值;若不存在,请说明理由. (3)如果点以每分钟1个单位长度的速度从点向右运动,同时另一点从点以每分钟2个单位长度的速度向左运动.设分钟时点和点到点的距离相等,则的值为______.(直接写出答案) 7.已知,A,B在数轴上对应的数分用a,b表示,且,数轴上动点P对应的数用x表示. (1)在数轴上标出A、B的位置,并直接写出A、B之间的距离; (2)写出的最小值; (3)已知点C在点B的右侧且BC=9,当数轴上有点P满足PB=2PC时, ①求P点对应的数的值; ②数轴上另一动点Q从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点Q能移动到与①中的点P重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动可以重合。 8.阅读绝对值拓展材料:表示数a在数轴上的对应点与原点的距离如:表示5在数轴上的对应点到原点的距离而,即表示5、0在数轴上对应的两点之间的距离,类似的,有:表示5、在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为. 回答下列问题: (1)数轴上表示2和5的两点之间的距离是 ,数轴上表示1和的两点之间的距离是 ; (2)数轴上表示x和的两点A和B之间的距离是 ,如果A、B两点之间的距离为2,那么 . (3)可以理解为数轴上表示x和 的两点之间的距离. (4)可以理解为数轴上表示x的点到表示 和 这两点的距离之和.可以理解为数轴上表示x的点到表示 和 这两点的距离之和. (5)最小值是 ,的最小值是 . 9.如图一,点在线段上,图中有三条线段、和,若其中一条线段的长度是另外一条线段长度的倍,则称点是线段的“巧点”. (1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决) (2)如图二,点和在数轴上表示的数分别是和,点是线段的巧点,求点在数轴上表示的数。 (应用拓展) (3)在(2)的条件下,动点从点处,以每秒个单位的速度沿向点匀速运动,同时动点从点出发,以每秒个单位的速度沿向点匀速运动,当其中一点到达中点时,两个点运动同时停止,当、、三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间的所有可能值. 10.在数轴上,点代表的数是,点代表的数是2,代表点与点之间的距离, (1)填空 ①______. ②若点为数轴上点与之间的一个点,且,则______. ③若点为数轴上一点,且,则______. (2)若点为数轴上一点,且点到点点的距离与点到点的距离的和是35,求点表示的数; (3)若从点出发,从原点出发,从点出发,且、、同时向数轴负方向运动,点的运动速度是每秒6个单位长度,点的运动速度是每秒8个单位长度,点的运动速度是每秒2个单位长度,在、、同时向数轴负方向运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少? 11.如图1,P点从点A开始以的速度沿的方向移动,Q点从点C开始以的速度沿的方向移动,在直角三角形中,,若,,,如果P,Q同时出发,用t(秒)表示移动时间. (1)如图1,若点P在线段上运动,点Q在线段上运动,当t为何值时,; (2)如图2,点Q在上运动,当t为何值时,三角形的面积等于三角形面积的; (3)如图3,当P点到达C点时,P,Q两点都停止运动,当t为何值时,线段的长度等于线段的长. 12.如图,数轴上有三个点、、,表示的数分别是、、,请回答: (1)若使、两点的距离与、两点的距离相等,则需将点向左移动______个单位. (2)若移动、、三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是_______个单位; (3)若在表示的点处有一只小青蛙,一步跳个单位长.小青蛙第次先向左跳步,第次再向右跳步,然后第次再向左跳步,第次再向右跳步按此规律继续跳下去,那么跳第次时,应跳_______步,落脚点表示的数是_______. (4)数轴上有个动点表示的数是,则的最小值是_______. 13.已知直线AB过点O,∠COD=90°,OE是∠BOC的平分线. (1)操作发现:①如图1,若∠AOC=40°,则∠DOE= ②如图1,若∠AOC=α,则∠DOE= (用含α的代数式表示) (2)操作探究:将图1中的∠COD绕顶点O顺时针旋转到图2的位置,其他条件不变,②中的结论是否成立?试说明理由. (3)拓展应用:将图2中的∠COD绕顶点O逆时针旋转到图3的位置,其他条件不变,若∠AOC=α,求∠DOE的度数,(用含α的代数式表示) 14.如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒. (1)当t=2时,求∠POQ的度数; (2)当∠POQ=40°时,求t的值; (3)在旋转过程中,是否存在t的值,使得∠POQ=∠AOQ?若存在,求出t的值;若不存在,请说明理由. 15.如果两个角的差的绝对值等于60°,就称这两个角互为“伙伴角”,其中一个角叫做另一个角的“伙伴角”(本题所有的角都指大于0°小于180°的角),例如,,,则和互为“伙伴角”,即是的“伙伴角”,也是的“伙伴角”. (1)如图1.O为直线上一点,,,则的“伙伴角”是_______________. (2)如图2,O为直线上一点,,将绕着点O以每秒1°的速度逆时针旋转得,同时射线从射线的位置出发绕点O以每秒4°的速度逆时针旋转,当射线与射线重合时旋转同时停止,若设旋转时间为t秒,求当t何值时,与互为“伙伴角”. (3)如图3,,射线从的位置出发绕点O顺时针以每秒6°的速度旋转,旋转时间为t秒,射线平分,射线平分,射线平分.问:是否存在t的值使得与互为“伙伴角”?若存在,求出t值;若不存在,请说明理由. 16.已知,O为直线AB上一点,射线OC将分成两部分,若时, (1)如图1,若OD平分,OE平分,求的度数; (2)如图2,在(1)的基础上,将以每秒的速度绕点O顺时针旋转,同时射线OC以每秒的速度绕点O顺时针旋转,设运动时间为. ①t为何值时,射线OC平分? ②t为何值时,射线OC平分? 17.如图①,直线、相交于点O,射线,垂足为点O,过点O作射线使. (1)将图①中的直线绕点O逆时针旋转至图②,在的内部,当平分时,是否平分,请说明理由; (2)将图①中的直线绕点O逆时针旋转至图③,在的内部,探究与之间的数量关系,并说明理由; (3)若,将图①中的直线绕点O按每秒5°的速度逆时针旋转度设旋转的时间为t秒,当与互余时,求t的值. 18.已知是关于x的二次二项式,A,B是数轴上两点,且A,B对应的数分别为a,b. (1)求线段AB的中点C所对应的数; (2)如图,在数轴上方从点C出发引出射线CD,CE,CF,CG,且CF平分∠ACD,CG平分∠BCE,试猜想∠DCE与∠FCG之间是否存在确定的数量关系,并说明理由; (3)在(2)的条件下,已知∠DCE=20°,∠ACE=30°,当∠DCE绕着点C以2°/秒的速度逆时针旋转t秒()时,∠ACF和∠BCG中的一个角的度数恰好是另一个角度数的两倍,求t的值 19.如图,点,在数轴上所对应的数分别为-5,7(单位长度为),是,间一点,,两点分别从点,出发,以,的速度沿直线向左运动(点在线段上,点在线段上),运动的时间为. (1)______. (2)若点,运动到任一时刻时,总有,请求出的长. (3)在(2)的条件下,是数轴上一点,且,求的长. 20.如图,在数轴上点表示数,点表示数,,满足. (1)求,的值; (2)若点与点之间的距离表示为,点与点之间的距离表示为,请在数轴上找一点,使,求点表示的数; (3)如图,一小球甲从点处以2个单位/秒的速度向左运动;同时另一个小球乙从点处以3个单位/秒的速度也向左运动,设运动的时间为(秒). ①分别表示出(秒)时甲、乙两小球在数轴上所表示的数(用含的代数式表示); ②求甲、乙两小球相距两个单位时所经历的时间. 【参考答案】***试卷处理标记,请不要删除 一、七年级上册数学压轴题 1.(1)见解析;(2);(3)①时,点O恰好为线段PQ的中点;②当MN=3时 ,的值为或秒. 【分析】 (1)由绝对值和偶次方的非负性质得出,,得出,,画出图形即可; (2)设点C对应的数为x,分两 解析:(1)见解析;(2);(3)①时,点O恰好为线段PQ的中点;②当MN=3时 ,的值为或秒. 【分析】 (1)由绝对值和偶次方的非负性质得出,,得出,,画出图形即可; (2)设点C对应的数为x,分两种情况,画出示意图,由题意列出方程,解方程即可; (3)①分相遇前和相遇后两种情况,画出示意图,由题意列出方程,解方程即可; ②根据题意得到点Q、点N对应的数,列出绝对值方程即可求解. 【详解】 (1)∵, ∴,, ∴,, 点A,B的位置如图所示: (2)设点C对应的数为, 由题意得:C应在A点的右侧, ∴CA==, ①当点C在线段AB上时,如图所示: 则CB=, ∵CA-CB=, ∴, 解得:; ②当点C在线段AB延长线上时,如图所示: 则CB=, ∵CA-CB=, ∴,方程无解; 综上,点C对应的数为; 故答案为:; (3)①由题意得:,,分两种情况讨论: 相遇前,如图: ,, ∵点O恰好为线段PQ的中点, ∴, 解得:; 相遇后,如图: ,, ∵点O恰好为线段PQ的中点, ∴, 解得:,此时,,不合题意; 故时,点O恰好为线段PQ的中点; ②当运动时间为t秒时,点P对应的数为(),点Q对应的数为(), ∵M为AP的中点,点N在线段BQ上,且, ∴点M对应的数为, 点N对应的数为, ∵, ∴, ∴, ∴或, 答:当的值为或秒时,. 【点睛】 本题考查了一元一次方程的应用、绝对值和偶次方的非负性以及数轴,解题的关键是根据题意正确画出图形,要考虑全面,分类讨论,不要遗漏. 2.(1)15,3;(2)3;(3)存在,1或 【分析】 (1)根据两点间的距离公式可求点表示的数;根据线段的倍分关系可求点表示的数; (2)算出点P运动到点C的时间即可求解; (3)分点在点左侧时,点 解析:(1)15,3;(2)3;(3)存在,1或 【分析】 (1)根据两点间的距离公式可求点表示的数;根据线段的倍分关系可求点表示的数; (2)算出点P运动到点C的时间即可求解; (3)分点在点左侧时,点在点右侧时两种情况讨论即可求解. 【详解】 解:(1)点表示的数是;点表示的数是. 故答案为:15,3; (2)当P运动到C点时,s, 则,点Q与点B的距离是:; (3)假设存在, 当点在点左侧时,,, , , 解得. 此时点表示的数是1; 当点在点右侧时,,, , , 解得. 此时点表示的数是. 综上所述,在运动过程中存在,此时点表示的数为1或. 【点睛】 考查了数轴、两点间的距离,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解. 3.(1)1,5;(2)①3;②-1007,1011;(3)不变,值为8 【分析】 (1)利用非负性可求解; (2)①由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解; ②由折叠的性质可求解 解析:(1)1,5;(2)①3;②-1007,1011;(3)不变,值为8 【分析】 (1)利用非负性可求解; (2)①由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解; ②由折叠的性质可求解; (3)利用两点距离公式分别求出AC,AB,表示出3AC-5AB,再化简即可求解. 【详解】 解:(1)∵b是最小的正整数, ∴b=1, ∵(c-5)2+|a+b|=0. ∴c=5,a=-b=-1, 故答案为:1,5; (2)①∵将数轴折叠,使得A与C点重合: ∴AC的中点表示的数是(-1+5)÷2=2, ∴与点B重合的数=2-1+2=3; ②点P表示的数为2-2018÷2=-1007, 点Q表示的数为2+2018÷2=1011, 故答案为:-1007,1011; (3)3AC-5AB的值不变. 理由是: 点A表示的数为:-1-2t, 点B表示的数为:1+t, 点C表示的数为:5+3t, ∴AC=5+3t-(-1-2t)=6+5t,AB=1+t-(-1-2t)=2+3t, 3AC-5AB=3(6+5t)-5(2+3t)=8, 所以3AC-5AB的值不变,为8. 【点睛】 本题考查了数轴,非负性,折叠的性质,两点距离公式,灵活运用这些性质解决问题是本题的关键. 4.(1)-1,2,7;(2)2;(3)BC-AB的值不随着时间t的变化而改变,其值为2 【分析】 (1)根据a是最大的负整数,即可确定a的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即 解析:(1)-1,2,7;(2)2;(3)BC-AB的值不随着时间t的变化而改变,其值为2 【分析】 (1)根据a是最大的负整数,即可确定a的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得b,c的值; (2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值; (3)先求出BC=3t+5,AB=3t+3,从而得出BC-AB,从而求解. 【详解】 解:(1)∵a是最大的负整数, ∴a=-1, ∵|c-7|+(2a+b)2=0, ∴c-7=0,2a+b=0, ∴b=2,c=7. 故答案为:-1,2,7; (2)BC-AB =(7-2)-(2+1) =5-3 =2. 故此时BC-AB的值是2; (3)BC-AB的值不随着时间t的变化而改变,其值为2.理由如下: t秒时,点A对应的数为-1-t,点B对应的数为2t+2,点C对应的数为5t+7. ∴BC=(5t+7)-(2t+2)=3t+5,AB=(2t+2)-(-1-t)=3t+3, ∴BC-AB=(3t+5)-(3t+3)=2, ∴BC-AB的值不随着时间t的变化而改变,其值为2. 【点睛】 此题考查有理数及整式的混合运算,以及数轴,正确理解AB,BC的变化情况是关键. 5.(1)2,1;(2);;(3)当P在点B的左侧时,P表示的数为-35或或;若点P在点B的右侧,P表示的数为40或或. 【分析】 (1)利用数轴上两点之间的距离公式直接可求得; (2)根据题意求得CA 解析:(1)2,1;(2);;(3)当P在点B的左侧时,P表示的数为-35或或;若点P在点B的右侧,P表示的数为40或或. 【分析】 (1)利用数轴上两点之间的距离公式直接可求得; (2)根据题意求得CA与BC的关系,得到答案; (3)根据PA=2PB或PB=2PA列方程求解;分当P为A、B关联点、A为P、B关联点、B为A、P关联点三种情况列方程解答. 【详解】 解:(1)三点所表示的数分别为, AB=3-1=2;BC=4-3=1, 故答案是:2,1; (2)点A表示的数为-2,点B表示的数为1,表示的数为-1 =1 ,=2 是点A,B的“关联点” 点A表示的数为-2,点B表示的数为1,表示的数为2 =4 ,=1 不是点A,B的“关联点” 点A表示的数为-2,点B表示的数为1,表示的数为4 =6 ,=3 是点A,B的“关联点” 点A表示的数为-2,点B表示的数为1,表示的数为6 =8 ,=5 不是点A,B的“关联点” 故答案为: (3)①若点P在点B的左侧,且点P是点A,B的“关联点”,设点P表示的数为 (I) 当P在点A的左侧时,则有:2PA=PB,即2(-10-)=15- 解得 =-35 (II)当点P在A,B之间时,有2PA=PB或PA=2PB 既有2(+10)=15-或+10=2(15-) 解得=或 因此点P表示的数为-35或或 ②若点P在点B的右侧 (I)若点P是A,B的“关联点”则有2PB=PA 即2(-15)=+10 解得=40 (II)若点B是A,P的“关联点”则有2AB=PB或AB=2PB 即2(15+10)=-15或15+10=2(x-15) 解得=65或 (III)若点A是B,P的“关联点”则有2AB=AP 即2(15+10)=+10 解得=40 因此点P表示的数为40或或 【点睛】 本题考查了一元一次方程的应用,数轴及数轴上两点的距离、动点问题,认真理解关联点的概念,分情况讨论列式是解题关键. 6.(1)1 (2)存在,或 (3)或 【分析】 (1)根据两点间的距离列方程求解即可; (2)分两种情况求解即可; (3)分点P和点Q相遇时和点Q运动到点M的左侧时两种情况 解析:(1)1 (2)存在,或 (3)或 【分析】 (1)根据两点间的距离列方程求解即可; (2)分两种情况求解即可; (3)分点P和点Q相遇时和点Q运动到点M的左侧时两种情况求解. 【详解】 解:(1)由题意得 3-x=x-(-1), 解得 x=1; (2)存在, ∵MN=3-(-1)=4, ∴点P不可能在M、N之间. 当点P在点M的左侧时, (-1-x)+(3-x)=8, 解得 x=-3; 当点P在点N的右侧时, x-(-1)+(x-3)=8, 解得 x=5; ∴或; (3)当点P和点Q相遇时, t+2t=3, 解得 t=1; 当点Q运动到点M的左侧时, t+1=2t-4, 解得 t=5; ∴或. 【点睛】 此题主要考查了数轴的应用以及一元一次方程的应用,分类讨论得出是解题关键. 7.(1)A、B位置见解析,AB=30;(2)30;(3)①8或-4;②能,第8次 【分析】 (1)求出a、b的值,在数轴表示即可,求出AB的距离; (2)|x-20|+|x+10|的最小值,就是数轴上 解析:(1)A、B位置见解析,AB=30;(2)30;(3)①8或-4;②能,第8次 【分析】 (1)求出a、b的值,在数轴表示即可,求出AB的距离; (2)|x-20|+|x+10|的最小值,就是数轴上表示20的点,与表示-10的点之间的距离; (3)①求出c的值,设出点P对应的数,用距离列方程求解即可; ②点Q移动时,每一次对应的数分别列举出来,发现规律,得出结论. 【详解】 解:(1)|a-20|+(b+10)2=0,解得:a=20,b=-10; ∴AB=20-(-10)=30; (2)|x-a|+|x-b|=|x-20|+|x+10|, 当x位于点A与点B之间时,即,-10≤x≤20时,|x-20|+|x+10|的值最小,最小值为AB=30, 答:|x-20|+|x+10|的最小值为30; (3)①点C在点B的右侧且|BC|=9,因此点C所表示的数为-1, 设点P表示的数为x, |x+10|=2|x+1|,解得x=8或x=-4; ②点Q每次移动对应在数轴上的数, 第1次:-1,第3次:-3,第5次:-5,…… 第2次:2,第4次:4,第6次:6,…… 因此点Q能移动到与①中的点P重合的位置,与8重合时,移动第8次,不可能与-4重合, 答:点Q能移动到与①中的点P重合的位置,移动的次数为8次. 【点睛】 本题考查数轴表示数的意义和方法,理解数轴上两点之间距离的计算方法,是解决问题的关键. 8.(1)3,4;(2)|x+1|,x=1或-3;(3)-2;(4)2,3,-2,1;(5)1,3 【分析】 (1)根据两点之间的距离公式计算即可; (2)根据两点之间的距离公式计算即可; (3)根据绝 解析:(1)3,4;(2)|x+1|,x=1或-3;(3)-2;(4)2,3,-2,1;(5)1,3 【分析】 (1)根据两点之间的距离公式计算即可; (2)根据两点之间的距离公式计算即可; (3)根据绝对值的意义可得; (4)根据绝对值的意义可得; (5)分别得出和的意义,再根据数轴的性质可得. 【详解】 解:(1)数轴上表示2和5的两点之间的距离是3, 数轴上表示1和-3的两点之间的距离是4; (2)数轴上表示x和-1的两点A和B之间的距离是|x+1|, 如果|AB|=2,即|x+1|=2, ∴x=1或-3; (3)|x+2|可以理解为数轴上表示x和-2的两点之间的距离; (4)|x-2|+|x-3|可以理解为数轴上表示x的点到表示2和3这两点的距离之和, |x+2|+|x-1|可以理解为数轴上表示x的点到表示-2和1这两点的距离之和; (5)由(4)可知: 当x在2和3之间时,|x-2|+|x-3|最小值是1, 当x在-2和1之间时,|x+2|+|x-1|的最小值是3. 【点睛】 本题考查的是绝对值的问题,涉及到数轴应用问题,只要理解绝对值含义和数轴上表示数值的关系(如:|x+2|表示x与-2的距离),即可求解. 9.(1)是;(2)10或0或20;(3) ;t=6;;t=12;;. 【分析】 (1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可; (2)由题意设C点表示的数为 解析:(1)是;(2)10或0或20;(3) ;t=6;;t=12;;. 【分析】 (1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可; (2)由题意设C点表示的数为x,再根据新定义列出合适的方程即可; (3)根据题意先用t的代数式表示出线段AP,AQ,PQ,再根据新定义列出方程,得出合适的解即可求出t的值. 【详解】 解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点, 故答案为:是; (2)设C点表示的数为x,则AC=x+20,BC=40-x,AB=40+20=60, 根据“巧点”的定义可知: ①当AB=2AC时,有60=2(x+20), 解得,x=10; ②当BC=2AC时,有40-x=2(x+20), 解得,x=0; ③当AC=2BC时,有x+20=2(40-x), 解得,x=20. 综上,C点表示的数为10或0或20; (3)由题意得, (i)、若0≤t≤10时,点P为AQ的“巧点”,有 ①当AQ=2AP时,60-4t=2×2t, 解得,, ②当PQ=2AP时,60-6t=2×2t, 解得,t=6; ③当AP=2PQ时,2t=2(60-6t), 解得,; 综上,运动时间的所有可能值有;t=6;; (ii)、若10<t≤15时,点Q为AP的“巧点”,有 ①当AP=2AQ时,2t=2×(60-4t), 解得,t=12; ②当PQ=2AQ时,6t-60=2×(60-4t), 解得,; ③当AQ=2PQ时,60-4t=2(6t-60), 解得,. 综上,运动时间的所有可能值有:t=12;;. 故,运动时间的所有可能值有:;t=6;;t=12;;. 【点睛】 本题是新定义题,是数轴的综合题,主要考查数轴上的点与数的关系,数轴上两点间的距离,一元一次方程的应用,解题的关键是根据新定义列出方程并进行求解. 10.(1)①14;②8;③16或12;(2)或;(3)当时,点表示的数为,点表示的数为,点表示的数为;当时,点表示的数为,点表示的数为,点表示的数为 【分析】 (1)①根据距离定义可直接求得答案14.② 解析:(1)①14;②8;③16或12;(2)或;(3)当时,点表示的数为,点表示的数为,点表示的数为;当时,点表示的数为,点表示的数为,点表示的数为 【分析】 (1)①根据距离定义可直接求得答案14.②根据题目要求,P在数轴上点A与B之间,所以根据BP=AB−AP进行求解.③需要考虑两种情况,即P在数轴上点A与B之间时和当P不在数轴上点A与B之间时.当P在数轴上点A与B之间时,AP=AB−BP.当P不在数轴上点A与B之间时,此时有两种情况,一种是超越A点,在A点左侧,此时BP>14,不符合题目要求.另一种情况是P在B点右侧,此时根据AP=AB+BP作答. (2)根据前面分析,C不可能在AB之间,所以,C要么在A左侧,要么在B右侧.根据这两种情况分别进行讨论计算. (3)因为M点的速度为每秒2个单位长度,远小于P、Q的速度,因此M点永远在P、Q的右侧.“当其中一个点与另外两个点的距离相等时”这句话可以理解成一点在另外两点正中间.因此有几种情况进行讨论,第一是Q在P和M的正中间,另一种是P在Q和M的正中间.第三种是PQ重合时,MP=MQ,三种情况分别列式进行计算求解. 【详解】 (1)①∵点代表的数是,点代表的数是2. ∴. 故答案为:14. ②∵点为数轴上之间的一点,且, ∴. 故答案为:8. ③∵点为数轴上一点,且, ∴, ∴或12. 故答案为:16或12. (2)∵点到点的距离与点到点的距离之和为35. 当点在点左侧时, , ∴, ∴点表示的数为. 当点在点右侧时, , ∴, ∴点表示的数为, ∴点表示的数为或. (3)①当点到点、两个点距离相等时, , 解得. 此时点表示的数为, 点表示的数为, 点表示的数为. ②当点到、两个点距离相等时, , 解得(舍). ③当、重合时,即点到、两个点距离相等, , 解得, 此时点表示的数为, 点表示的数为. 点表示的数为. 因此,当时,点表示的数为,点表示的数为,点表示的数为;当时,点表示的数为,点表示的数为,点表示的数为. 【点睛】 本题考查了动点问题与一元一次方程的应用.在充分理解题目要求的基础上,可借助数轴用数形结合的方法求解.在解答过程中,注意动点问题的多解可能,并针对每一种可能进行讨论分析. 11.(1)4,(2)9,(3)或4 【分析】 (1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,由AQ=AP,可得方程12﹣t=2t,解方程即可. (2)当Q在 解析:(1)4,(2)9,(3)或4 【分析】 (1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,由AQ=AP,可得方程12﹣t=2t,解方程即可. (2)当Q在线段CA上时,设CQ=t,则AQ=12﹣t,根据三角形QAB的面积等于三角形ABC面积的,列出方程即可解决问题. (3)分三种情形讨论即可①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动.②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动.③当t>12时,Q在线段AB上运动,P在线段BC上运动时,分别列出方程求解即可. 【详解】 解:(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t, ∵AQ=AP, ∴12﹣t=2t, ∴t=4. ∴t=4时,AQ=AP. (2)当Q在线段CA上时,设CQ=t,则AQ=12﹣t, ∵三角形QAB的面积等于三角形ABC面积的, ∴•AB•AQ=וAB•AC, ∴×16×(12﹣t)=×16×12,解得t=9. ∴t=9时,三角形QAB的面积等于三角形ABC面积的. (3)由题意可知,Q在线段CA上运动的时间为12秒,P在线段AB上运动时间为8秒, ①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动,设CQ=t,AP=2t,则AQ=12﹣t,BP=16﹣2t, ∵AQ=BP, ∴12﹣t=16﹣2t,解得t=4. ②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动,设CQ=t,则AQ=12﹣t,BP=2t﹣16, ∵AQ=BP, ∴12﹣t=2t﹣16,解得t=. ③当t>12时,Q在线段AB上运动,P在线段BC上运动时, ∵AQ=t﹣12,BP=2t﹣16, ∵AQ=BP, ∴t﹣12=2t﹣16,解得t=4(舍去), 综上所述,t=或4时,AQ=BP. 【点睛】 本题考查线段和差、一元一次方程等知识,解题的关键是理解题意,学会用方程的思想思考问题,属于中考常考题型. 12.(1)3;(2)3,7;(3)197,;(4)9. 【分析】 (1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得; (2)分为三种:移动点B、C;移动点A、C;移动点A、B,再 解析:(1)3;(2)3,7;(3)197,;(4)9. 【分析】 (1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得; (2)分为三种:移动点B、C;移动点A、C;移动点A、B,再利用数轴的定义分别求出移动所走的距离和即可得; (3)先根据前4次归纳类推出一般规律,再列出运算式子,计算有理数的加减法即可得; (4)分,,和数四种情况,再分别结合数轴的定义、化简绝对值即可得. 【详解】 (1)设需将点C向左移动x个单位, 由题意得:, 解得, 即需将点C向左移动3个单位, 故答案为:3; (2), , , 由题意,分以下三种情况: ①移动点B、C, 把点B向左移动2个单位,点C向左移动7个单位, 此时移动所走的距离和为; ②移动点A、C, 把点A向右移动2个单位,点C向左移动5个单位, 此时移动所走的距离和为; ③移动点A、B, 把点A向右移动7个单位,点B向右移动5个单位, 此时移动所走的距离和为; 综上,移动方法有3种,其中移动所走的距离和最小的是7个单位, 故答案为:3,7; (3)第次跳的步数为, 第次跳的步数为, 第次跳的步数为, 第次跳的步数为, 归纳类推得:第n次跳的步数为,其中n为正整数, 则第99次跳的步数为, 落脚点表示的数为, , , , 故答案为:197,; (4)由题意,分以下四种情况: ①当时, 则; ②当时, 则, , ; ③当时, 则, , ; ④当时, 则; 综上,, 则的最小值是9, 故答案为:9. 【点睛】 本题考查了数轴、化简绝对值、一元一次方程的应用等知识点,熟练掌握数轴的定义是解题关键. 13.(1)20°,;(2)成立,理由见详解;(3)180°-. 【分析】 (1)如图1,根据平角的定义和∠COD=90°,得∠AOC+∠BOD=90°,从而∠BOD=50°,OE是∠BOC的平分线,可得 解析:(1)20°,;(2)成立,理由见详解;(3)180°-. 【分析】 (1)如图1,根据平角的定义和∠COD=90°,得∠AOC+∠BOD=90°,从而∠BOD=50°,OE是∠BOC的平分线,可得∠BOE=70°,由角的和差得∠DOE=20°;同理可得:∠DOE=α; (2)如图2,根据平角的定义得:∠BOC=180°-α,由角平分线定义得:∠EOC=∠BOC=90°-α,根据角的差可得(1)中的结论还成立; (- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 常州 外国语学校 七年 级数 上册 期末 压轴 汇编
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文