人教版七年级数学下册-期末试卷易错题(Word版-含答案).doc
《人教版七年级数学下册-期末试卷易错题(Word版-含答案).doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册-期末试卷易错题(Word版-含答案).doc(27页珍藏版)》请在咨信网上搜索。
人教版七年级数学下册 期末试卷易错题(Word版 含答案) 一、选择题 1.如图,与是同旁内角的是( ) A. B. C. D. 2.下列图形中,可以由其中一个图形通过平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点向下平移4个单位后的坐标是,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列给出四个命题:①如果两个角相等,那么它们是对顶角;②如果两个角互为邻补角,那么它们的平分线互相垂直;③如果两条直线垂直于同一条直线,那么这两条直线平行;④如果两条直线平行于同一条直线,那么这两条直线平行.其中为假命题的是( ) A.① B.①② C.①③ D.①②③④ 5.将一张边沿互相平行的纸条如图折叠后,若边,则翻折角与一定满足的关系是( ) A. B. C. D. 6.若,,则( ) A.632.9 B.293.8 C.2938 D.6329 7.如图,AB//CD,∠EBF=2∠ABE,∠ECF=3∠DCE,设∠ABE=α,∠E=β,∠F=γ,则α,β,γ的数量关系是( ) A.4β﹣α+γ=360° B.3β﹣α+γ=360° C.4β﹣α﹣γ=360° D.3β﹣2α﹣γ=360° 8.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( ) A.(2 ,1) B.(-1,-1) C.(﹣2,0) D.(2,0) 二、填空题 9.已知=2.493, =7.882,则=______________. 10.点A关于x轴的对称点的坐标为____________. 11.如图,在△ABC中,∠ABC,∠ACB的角平分线相交于O点. 如果∠A=α,那么∠BOC的度数为____________. 12.如图,将三角板与两边平行的直尺()贴在一起,使三角板的直角顶点C()在直尺的一边上,若,则的度数等于________. 13.如图,将△ABC沿直线AC翻折得到△ADC,连接BD交AC于点E,AF为△ACD的中线,若BE=2,AE=3,△AFC的面积为2,则CE=_____. 14.若,且a,b是两个连续的整数,则a+b的值为_______ 15.P(2m-4,1-2m)在y轴上,则m=__________. 16.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0),沿长方形BCDE的边作环绕运动.物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是___. 三、解答题 17.(1)计算: (2)解方程: 18.已知,,求下列各式的值: (1); (2). 19.已知:如图,DB⊥AF于点G,EC⊥AF于点H,∠C=∠D.求证:∠A=∠F. 证明:∵DB⊥AF于点G,EC⊥AF于点H(已知), ∴∠DGH=∠EHF=90°( ). ∴DB∥EC( ). ∴∠C= ( ). ∵∠C=∠D(已知), ∴∠D= ( ). ∴DF∥AC( ). ∴∠A=∠F( ). 20.如图,在平面直角坐标系中,,,.中任意一点经平移后对应点为,将作同样的平移得到. (1)请画出并写出点,,的坐标; (2)求的面积; (3)若点在轴上,且的面积是1,请直接写出点的坐标. 21.(1)如果是的整数部分,是的小数部分,求的平方根. (2)当为何值时,关于的方程的解与方程的解互为相反数. 二十二、解答题 22.(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______; (2)若一个圆的面积与一个正方形的面积都是,设圆的周长为.正方形的周长为,则______(填“”,或“”,或“”) (3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由? 二十三、解答题 23.已知直线,点P为直线、所确定的平面内的一点. (1)如图1,直接写出、、之间的数量关系 ; (2)如图2,写出、、之间的数量关系,并证明; (3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,,求的度数. 24.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视.若灯转动的速度是每秒2度,灯转动的速度是每秒1度.假定主道路是平行的,即,且. (1)填空:_________; (2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行? (3)如图2,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由. 25.在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点. (1)如图1,点在线段上运动时,平分. ①若,,则_____;若,则_____; ②试探究与之间的数量关系?请说明理由; (2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由. 26.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方. (1)l2与l3的位置关系是 ; (2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °; (3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG; (4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据同旁内角的概念:两条直线被第三条直线所截,若两个角都在两直线之间,并且在第三条直线的同旁,据此可排除选项. 【详解】 解:与是同旁内角的是; 故选C. 【点睛】 本题主要考查同旁内角的概念,熟练掌握同旁内角的概念是解题的关键. 2.C 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到; 故选:C. 【点睛】 本题考查的 解析:C 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到; 故选:C. 【点睛】 本题考查的是利用平移设计图案,熟知图形平移后所得图形与原图形全等是解答此题的关键. 3.B 【分析】 根据向下平移,纵坐标减,求出点的坐标,再根据各象限内点的特征解答. 【详解】 解:设点P纵坐标为y, 点向下平移4个单位后的坐标是, , ∴ 点的坐标为, 点在第二象限. 故选:B. 【点睛】 本题考查了坐标与图形的变化平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求出点的坐标是解题的关键. 4.C 【分析】 根据两个相等的角不一定是对顶角对①进行判定,根据邻补角与角平分线的性质对②进行判断,根据在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行对③进行判断,根据平行线的判定对④进行判断. 【详解】 解:①如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意; ②如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意; ③在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线平行,选项说法错误,符合题意; ④如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意; 故选:C. 【点睛】 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 5.B 【分析】 根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出. 【详解】 解:由翻折可知,∠DAE=2,∠CBF=2, ∵, ∴∠DAB+∠CBA=180°, ∴∠DAE+∠CBF=180°, 即, ∴, 故选:B. 【点睛】 本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算. 6.B 【分析】 把,再利用立方根的性质化简即可得到答案. 【详解】 解: , 故选: 【点睛】 本题考查的是立方根的含义,立方根的性质,熟练立方根的含义与性质是解题的关键. 7.A 【分析】 由∠EBF=2∠ABE,可得∠EBF=2α.由∠EBF+∠BEC+∠F+∠ECF=360°,可得∠ECF=360°﹣(2α+β+γ),那么∠DCE=.由∠BEC=∠M+∠DCE,可得∠M=∠BEC﹣∠DCE.根据AB//CD,得∠ABE=∠M,进而推断出4β﹣α+γ=360°. 【详解】 解:如图,分别延长BE、CD并交于点M. ∵AB//CD, ∴∠ABE=∠M. ∵∠EBF=2∠ABE,∠ABE=α, ∴∠EBF=2α. ∵∠EBF+∠BEC+∠F+∠ECF=360°, ∴∠ECF=360°﹣(2α+β+γ). 又∵∠ECF=3∠DCE, ∴∠DCE=. 又∵∠BEC=∠M+∠DCE, ∴∠M=∠BEC﹣∠DCE=β﹣. ∴β﹣=α. ∴4β﹣α+γ=360°. 故选:A. 【点睛】 本题考查了平行线的性质,三角形的外角性质,角度的计算,构造辅助线转化角度是解题的关键. 8.B 【分析】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1); 解析:B 【分析】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解. 【详解】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2,由题意知: 第一次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为 ,此时在BC边相遇,即第一次相遇点为(-1,1); 第二次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为,在DE边相遇,即第二次相遇点为(-1,-1); 第三次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为,在A点相遇,即第三次相遇点为(2,0); 此时甲乙回到原出发点,则每相遇三次,两点回到出发点, ∵ , 故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1) 故选:B 【点睛】 本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点. 二、填空题 9.93 【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则 点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开 解析:93 【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则 点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开方数每缩小100倍,则算术平方根就缩小10倍;对于立方根,当被开方数每扩大1000倍,则算术平方根就扩大10倍,当被开方数每缩小1000倍,则算术平方根就缩小10倍. 10.(2,4) 【分析】 直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案. 【详解】 解:点A(2,-4)关于x轴 解析:(2,4) 【分析】 直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案. 【详解】 解:点A(2,-4)关于x轴对称点A1的坐标为:(2,4). 故答案为:(2,4). 【点睛】 此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键. 11.90°+ 【解析】 ∵∠ABC、∠ACB的角平分线相交于点O, ∴∠OBC=∠ABC,∠OCB=∠ACB, ∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A, 解析:90°+ 【解析】 ∵∠ABC、∠ACB的角平分线相交于点O, ∴∠OBC=∠ABC,∠OCB=∠ACB, ∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A, ∵在△OBC中,∠BOC=180°-∠OBC-∠OCB, ∴∠BOC=180°-(90°-∠A)=90°+∠A=90°+. 12.35 【分析】 根据平行线的性质和直角三角形两锐角互余即可求得 【详解】 故答案为:35°. 【点睛】 本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键. 解析:35 【分析】 根据平行线的性质和直角三角形两锐角互余即可求得 【详解】 故答案为:35°. 【点睛】 本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键. 13.【分析】 根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得 【详解】 ∵AF为△ACD的中线,△AFC的面积为2, ∴S△ACD=2S△AFC=4, ∵ 解析:【分析】 根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得 【详解】 ∵AF为△ACD的中线,△AFC的面积为2, ∴S△ACD=2S△AFC=4, ∵△ABC沿直线AC翻折得到△ADC, ∴S△ABC=S△ADC,BD⊥AC,BE=ED, ∴S四边形ABCD=8, ∴, ∵BE=2,AE=3, ∴BD=4, ∴AC=4, ∴CE=AC﹣AE=4﹣3=1. 故答案为1. 【点睛】 本题考查了三角形中线的性质,翻折的性质,利用四边形的等面积法求解是解题的关键. 14.13 【解析】 分析:先估算出的范围,求出a、b的值,再代入求出即可. 详解:∵6<<7,∴a=6,b=7,∴a+b=13. 故答案为13. 点睛:本题考查了估算无理数的大小,能估算出的范围是解答此 解析:13 【解析】 分析:先估算出的范围,求出a、b的值,再代入求出即可. 详解:∵6<<7,∴a=6,b=7,∴a+b=13. 故答案为13. 点睛:本题考查了估算无理数的大小,能估算出的范围是解答此题的关键. 15.2 【分析】 根据y轴上的点的横坐标是0列式计算即可得到m的值. 【详解】 ∵点P(2m-4,1-2m)在y轴上, ∴2m-4=0, 解得m=2. 故答案为:2. 【点睛】 此题考查点的坐标,熟记y 解析:2 【分析】 根据y轴上的点的横坐标是0列式计算即可得到m的值. 【详解】 ∵点P(2m-4,1-2m)在y轴上, ∴2m-4=0, 解得m=2. 故答案为:2. 【点睛】 此题考查点的坐标,熟记y轴上的点的横坐标为0是解题的关键. 16.【分析】 利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答. 【详解】 解:矩形的周长为, 所以,第一次相遇的时间为秒, 此时, 解析: 【分析】 利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答. 【详解】 解:矩形的周长为, 所以,第一次相遇的时间为秒, 此时,甲走过的路程为, 相遇坐标为, 第二次相遇又用时间为(秒), 甲又走过的路程为, 相遇坐标为, ∵, ∴第3次相遇时在点A处,则 以后3的倍数次相遇都在点A处, ∵, ∴第2021次相遇地点与第2次相遇地点的相同, ∴第2021次相遇地点的坐标为. 故填:. 【点睛】 此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题,解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点. 三、解答题 17.(1);(2)x= 【分析】 (1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可. 【详解】 解:(1) = = 解析:(1);(2)x= 【分析】 (1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可. 【详解】 解:(1) = = =; (2), 去分母,可得:3(x+1)-6=2(2-3x), 去括号,可得:3x+3-6=4-6x, 移项,可得:3x+6x=4-3+6, 合并同类项,可得:9x=7, 系数化为1,可得:x=. 【点睛】 此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1. 18.(1)44;(2)48 【分析】 (1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值; (2)将a2+b2与ab的值代入原式计算即可求出值. 【详解】 解:(1)把 解析:(1)44;(2)48 【分析】 (1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值; (2)将a2+b2与ab的值代入原式计算即可求出值. 【详解】 解:(1)把两边平方得:, 把代入得:, ∴; (2)∵,, ∴===48. 【点睛】 此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 19.垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 先证DB∥EC,得∠C=∠DBA,再证∠D=∠DB 解析:垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 先证DB∥EC,得∠C=∠DBA,再证∠D=∠DBA,得DF∥AC,然后由平行线的性质即可得出结论. 【详解】 解:∵DB⊥AF于点G,EC⊥AF于点H(已知), ∴∠DGH=∠EHF=90°(垂直的定义), ∴DB∥EC(同位角相等,两直线平行), ∴∠C=∠DBA(两直线平行,同位角相等), ∵∠C=∠D(已知), ∴∠D=∠DBA(等量代换), ∴DF∥AC(内错角相等,两直线平行), ∴∠A=∠F(两直线平行,内错角相等). 故答案为:垂直的定义;同位角相等,两直线平行;∠DBA,两直线平行,同位角相等;∠DBA,等量代换;内错角相等,两直线平行;两直线平行,内错角相等. 【点睛】 本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键. 20.(1)图见解析,,,;(2)3.5;(3)点的坐标为或 【分析】 (1)依据点P(x0,y0)经平移后对应点为P1(x0+1,y0+2),可得平移的方向和距离,将△ABC作同样的平移即可得到△A1B 解析:(1)图见解析,,,;(2)3.5;(3)点的坐标为或 【分析】 (1)依据点P(x0,y0)经平移后对应点为P1(x0+1,y0+2),可得平移的方向和距离,将△ABC作同样的平移即可得到△A1B1C1; (2)利用割补法进行计算,即可得到△A1B1C1的面积; (3)设P(0,y),依据△A1B1P的面积是1,即可得到y的值,进而得出点P的坐标. 【详解】 解:(1)如图所示,即为所求;,,; (2)的面积为:; (3)设,则, ∵的面积是1, ∴, 解得, ∴点的坐标为或. 【点睛】 本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.(1)±3;(2)m=-4 【分析】 (1)估算,得到的范围,从而确定x、y的值,再代入计算即可. (2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可. 【详 解析:(1)±3;(2)m=-4 【分析】 (1)估算,得到的范围,从而确定x、y的值,再代入计算即可. (2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可. 【详解】 解:(1)∵, ∴, ∴, ∴x=6,y=, ∴=9, ∴的的平方根为±3; (2), 解得:x=-9, ∴的解为x=9,代入, 得, 解得:m=-4. 【点睛】 本题考查了一元一次方程的解,无理数的估算、平方根的意义,以及解一元一次方程,解题的关键是得到方程的解. 二十二、解答题 22.(1);(2)<;(3)不能,理由见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的 解析:(1);(2)<;(3)不能,理由见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可; (3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】 解:(1)∵小正方形的边长为1cm, ∴小正方形的面积为1cm2, ∴两个小正方形的面积之和为2cm2, 即所拼成的大正方形的面积为2 cm2, 设大正方形的边长为xcm, ∴ , ∴ ∴大正方形的边长为cm; (2)设圆的半径为r, ∴由题意得, ∴, ∴, 设正方形的边长为a ∵, ∴, ∴, ∴ 故答案为:<; (3)解:不能裁剪出,理由如下: ∵正方形的面积为900cm2, ∴正方形的边长为30cm ∵长方形纸片的长和宽之比为, ∴设长方形纸片的长为,宽为, 则, 整理得:, ∴, ∴, ∴, ∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】 本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查. 二十三、解答题 23.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55° 【分析】 (1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360 解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55° 【分析】 (1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°; (2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C; (3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG-∠GEH可得答案. 【详解】 解:(1)∠A+∠C+∠APC=360° 如图1所示,过点P作PQ∥AB, ∴∠A+∠APQ=180°, ∵AB∥CD, ∴PQ∥CD, ∴∠C+∠CPQ=180°, ∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°; (2)∠APC=∠A+∠C, 如图2,作PQ∥AB, ∴∠A=∠APQ, ∵AB∥CD, ∴PQ∥CD, ∴∠C=∠CPQ, ∵∠APC=∠APQ-∠CPQ, ∴∠APC=∠A-∠C; (3)由(2)知,∠APC=∠PAB-∠PCD, ∵∠APC=30°,∠PAB=140°, ∴∠PCD=110°, ∵AB∥CD, ∴∠PQB=∠PCD=110°, ∵EF∥BC, ∴∠BEF=∠PQB=110°, ∵EF∥BC, ∴∠BEF=∠PQB=110°, ∵∠PEG=∠PEF, ∴∠PEG=∠FEG, ∵EH平分∠BEG, ∴∠GEH=∠BEG, ∴∠PEH=∠PEG-∠GEH =∠FEG-∠BEG =∠BEF =55°. 【点睛】 此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 24.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD 【分析】 (1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数; (2)设A灯转动t秒, 解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD 【分析】 (1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数; (2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110; (3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化. 【详解】 解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2, ∴∠BAN=180°×=72°, 故答案为:72; (2)设A灯转动t秒,两灯的光束互相平行, ①当0<t<90时,如图1, ∵PQ∥MN, ∴∠PBD=∠BDA, ∵AC∥BD, ∴∠CAM=∠BDA, ∴∠CAM=∠PBD ∴2t=1•(30+t), 解得 t=30; ②当90<t<150时,如图2, ∵PQ∥MN, ∴∠PBD+∠BDA=180°, ∵AC∥BD, ∴∠CAN=∠BDA ∴∠PBD+∠CAN=180° ∴1•(30+t)+(2t-180)=180, 解得 t=110, 综上所述,当t=30秒或110秒时,两灯的光束互相平行; (3)∠BAC和∠BCD关系不会变化. 理由:设灯A射线转动时间为t秒, ∵∠CAN=180°-2t, ∴∠BAC=72°-(180°-2t)=2t-108°, 又∵∠ABC=108°-t, ∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°, ∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°, ∴∠BAC:∠BCD=2:1, 即∠BAC=2∠BCD, ∴∠BAC和∠BCD关系不会变化. 【点睛】 本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补. 25.(1)①115°,110°;②,证明见解析;(2),证明见解析. 【解析】 【分析】 (1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD= 解析:(1)①115°,110°;②,证明见解析;(2),证明见解析. 【解析】 【分析】 (1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的内角和定理可求得∠AFD=110°; ②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的内角和定理可得∠AFD=90°+∠B; (2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM +∠FMD =∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-∠B. 【详解】 (1)①∵AG平分∠BAC,∠BAC=100°, ∴∠CAG=∠BAC=50°; ∵,∠C=30°, ∴∠EDG=∠C=30°,∠FMD=∠GAC=50°; ∵DF平分∠EDB, ∴∠FDM=∠EDG=15°; ∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°; ∵∠B=40°, ∴∠BAC+∠C=180°-∠B=140°; ∵AG平分∠BAC,DF平分∠EDB, ∴∠CAG=∠BAC,∠FDM=∠EDG, ∵DE//AC, ∴∠EDG=∠C,∠FMD=∠GAC; ∴∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°; ∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°; 故答案为115°,110°; ②∠AFD=90°+∠B,理由如下: ∵AG平分∠BAC,DF平分∠EDB, ∴∠CAG=∠BAC,∠FDM=∠EDG, ∵DE//AC, ∴∠EDG=∠C,∠FMD=∠GAC; ∴∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B; ∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-∠B)=90°+∠B; (2)∠AFD=90°-∠B,理由如下: 如图,射线ED交AG于点M, ∵AG平分∠BAC,DF平分∠EDB, ∴∠CAG=∠BAC,∠NDE=∠EDB, ∴∠FDM=∠NDE=∠EDB, ∵DE//AC, ∴∠EDB=∠C,∠FMD=∠GAC; ∴∠FDM=∠NDE=∠C, ∴∠FDM +∠FMD =∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B; ∴∠AFD=∠FDM +∠FMD=90°-∠B. 【点睛】 本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键. 26.(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行 解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行线的性质即可得到结论; (4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论. 【详解】 解:(1)直线l2⊥l1,l3⊥l1, ∴l2∥l3, 即l2与l3的位置关系是互相平行, 故答案为:互相平行; (2)∵CE平分∠BCD, ∴∠BCE=∠DCE=BCD, ∵∠BCD=70°, ∴∠DCE=35°, ∵l2∥l3, ∴∠CED=∠DCE=35°, ∵l2⊥l1, ∴∠CAD=90°, ∴∠ADC=90°﹣70°=20°; 故答案为:35,20; (3)∵CF平分∠BCD, ∴∠BCF=∠DCF, ∵l2⊥l1, ∴∠CAD=90°, ∴∠BCF+∠AGC=90°, ∵CD⊥BD, ∴∠DCF+∠CFD=90°, ∴∠AGC=∠CFD, ∵∠AGC=∠DGF, ∴∠DGF=∠DFG; (4)∠N:∠BCD的值不会变化,等于;理由如下: ∵l2∥l3, ∴∠BED=∠EBH, ∵∠DBE=∠DEB, ∴∠DBE=∠EBH, ∴∠DBH=2∠DBE, ∵∠BCD+∠BDC=∠DBH, ∴∠BCD+∠BDC=2∠DBE, ∵∠N+∠BDN=∠DBE, ∴∠BCD+∠BDC=2∠N+2∠BDN, ∵DN平分∠BDC, ∴∠BDC=2∠BDN, ∴∠BCD=2∠N, ∴∠N:∠BCD=. 【点睛】 本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 期末试卷 易错题 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文