人教版七年级数学下学期期末压轴题复习及解析.doc
《人教版七年级数学下学期期末压轴题复习及解析.doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下学期期末压轴题复习及解析.doc(45页珍藏版)》请在咨信网上搜索。
一、解答题 1.如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(-2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D' (1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标. (2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标. (3)求四边形ABCD的面积. 2.如图,已知,是的平分线. (1)若平分,求的度数; (2)若在的内部,且于,求证:平分; (3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围. 3.阅读下面材料: 小亮同学遇到这样一个问题: 已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED. 求证:∠BED=∠B+∠D. (1)小亮写出了该问题的证明,请你帮他把证明过程补充完整. 证明:过点E作EFAB, 则有∠BEF= . ∵ABCD, ∴ , ∴∠FED= . ∴∠BED=∠BEF+∠FED=∠B+∠D. (2)请你参考小亮思考问题的方法,解决问题:如图乙, 已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E. ①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数; ②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示). 4.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0 (1)α= ,β= ;直线AB与CD的位置关系是 ; (2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论; (3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由. 5.如图①,将一张长方形纸片沿对折,使落在的位置; (1)若的度数为,试求的度数(用含的代数式表示); (2)如图②,再将纸片沿对折,使得落在的位置. ①若,的度数为,试求的度数(用含的代数式表示); ②若,的度数比的度数大,试计算的度数. 6.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB. (1)如图1,若∠OPQ=82°,求∠OPA的度数; (2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数; (3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由. 7.阅读下面的文字,解答问题. 对于实数a,我们规定:用符号[a]表示不大于a的最大整数;用{a}表示a减去[a]所得的差. 例如:[]=1,[2.2]=2,{}=﹣1,{2.2}=2.2﹣2=0.2. (1)仿照以上方法计算:[]= {5﹣}= ; (2)若[]=1,写出所有满足题意的整数x的值: . (3)已知y0是一个不大于280的非负数,且满足{}=0.我们规定:y1=[],y2=[],y3=[],…,以此类推,直到yn第一次等于1时停止计算.当y0是符合条件的所有数中的最大数时,此时y0= ,n= . 8.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如3,6,9等. (1)2020属于 类(填A,B或C); (2)①从A类数中任取两个数,则它们的和属于 类(填A,B或C); ②从A、B类数中任取一数,则它们的和属于 类(填A,B或C); ③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A,B或C); (3)从A类数中任意取出m个数,从B类数中任意取出n个数,把它们都加起来,若最后的结果属于C类,则下列关于m,n的叙述中正确的是 (填序号). ①属于C类;②属于A类;③,属于同一类. 9.定义:如果,那么称b为n的布谷数,记为. 例如:因为,所以, 因为, 所以. (1)根据布谷数的定义填空:g(2)=________________,g(32)=___________________. (2)布谷数有如下运算性质: 若m,n为正整数,则,. 根据运算性质解答下列各题: ①已知,求和的值; ②已知.求和的值. 10.(阅读材料) 数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙. 你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试: 第一步:∵,,, ∴. ∴能确定59319的立方根是个两位数. 第二步:∵59319的个位数是9, ∴能确定59319的立方根的个位数是9. 第三步:如果划去59319后面的三位319得到数59, 而,则,可得, 由此能确定59319的立方根的十位数是3,因此59319的立方根是39. (解答问题) 根据上面材料,解答下面的问题 (1)求110592的立方根,写出步骤. (2)填空:__________. 11.观察下列各式,并用所得出的规律解决问题: (1),,,…… ,,,…… 由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位. (2)已知,,则_____;______. (3),,,…… 小数点的变化规律是_______________________. (4)已知,,则______. 12.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如3,6,9等. (1)2020属于 类(填A,B或C); (2)①从A类数中任取两个数,则它们的和属于 类(填A,B或C); ②从A、B类数中任取一数,则它们的和属于 类(填A,B或C); ③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A,B或C); (3)从A类数中任意取出m个数,从B类数中任意取出n个数,把它们都加起来,若最后的结果属于C类,则下列关于m,n的叙述中正确的是 (填序号). ①属于C类;②属于A类;③,属于同一类. 13.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,,,其中a、b满足关系式:. ______,______,的面积为______; 如图2,石于点C,点P是线段OC上一点,连接BP,延长BP交AC于点当时,求证:BP平分;提示:三角形三个内角和等于 如图3,若,点E是点A与点B之间上一点连接CE,且CB平分问与有什么数量关系?请写出它们之间的数量关系并请说明理由. 14.问题情境: (1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答. 问题迁移: (2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由; (3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明. 15.如图1,点是第二象限内一点,轴于,且是轴正半轴上一点,是x轴负半轴上一点,且. (1)( ),( ) (2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点,求的度数: (注: 三角形三个内角的和为) (3)如图3,当点在线段上运动时,作交于的平分线交于,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由. 16.在平面直角坐标系中,对于任意两点,,如果,则称与互为“距点”.例如:点,点,由,可得点与互为“距点”. (1)在点,,中,原点的“距点”是_____(填字母); (2)已知点,点,过点作平行于轴的直线. ①当时,直线上点的“距点”的坐标为_____; ②若直线上存在点的“点”,求的取值范围. (3)已知点,,,的半径为,若在线段上存在点,在上存在点,使得点与点互为“距点”,直接写出的取值范围. 17.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M. (1)如图,当点D在线段OB的延长线上时, ①若D点的坐标为(﹣5,0),求点E的坐标. ②求证:M为BE的中点. ③探究:若在点D运动的过程中,的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由. (2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由). 18.在平面直角坐标系中,点,满足关系式. (1)求,的值; (2)若点满足的面积等于,求的值; (3)线段与轴交于点,动点从点出发,在轴上以每秒个单位长度的速度向下运动,动点从点出发,以每秒个单位长度的速度向右运动,问为何值时有,请直接写出的值. 19.学校将20××年入学的学生按入学年份、年级、班级、班内序号的顺序给每一位学生编号,如2015年入学的8年级3班的46号学生的编号为15080346.张山同学模仿二维码的方式给学生编号设计了一套身份识别系统,在5×5的正方形风格中,黑色正方形表示数字1,白色正方形表示数字0. 我们把从上往下数第i行、从左往右数第j列表示的数记为aij,(其中,i、j=1,2,3,4,5),规定Ai=16ai1+8ai2+4ai3+2ai4+ai5. (1)若A1表示入学年份,A2表示所在年级,A3表示所在班级,A4表示编号的十位数字,A5表示编号的个位数字. ①图1是张山同学的身份识别图案,请直接写出张山同学的编号; ②请在图2中画出2018年入学的9年级5班的39号同学的身份识别图案; (2)张山同学又设计了一套信息加密系统,其中A1表示入学年份加8,A2表示所在年级的数减6再加上所在班级的数,A3表示所在年级的数乘2后减3再减所在班级的数,将编号(班内序号)的末两位单列出来,作为一个两位数,个位与十位数字对换后再加2,所得结果的十位数字用A4表示、个位数字用A5表示.例如:2018年9年级5班的39号同学,其加密后的身份识别图案中,A1=18+8=26,A2=9-6+5=8,A3=9×2-3-5=10,93+2=95,所以A4=9,A5=5,所以其加密后的身份识别(26081095)图案如图3所示.图4是李思同学加密后的身份识别图案,请求出李思同学的编号. 20.(1)阅读下列材料并填空: 对于二元一次方程组,我们可以将x,y的系数和相应的常数项排成一个数表,求得的一次方程组的解 ,用数表可表示为.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白: 从而得到该方程组的解为x= ,y= . (2)仿照(1)中数表的书写格式写出解方程组的过程. 21.如图①,在平面直角坐标系中,点A在x轴上,直线OC上所有的点坐标,都是二元一次方程的解,直线AC上所有的点坐标,都是二元一次方程的解,过C作x轴的平行线,交y轴与点B. (1)求点A、B、C的坐标; (2)如图②,点M、N分别为线段BC,OA上的两个动点,点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,设运动时间为t秒,且0<t<4,试比较四边形MNAC的面积与四边形MNOB的面积的大小. 22.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.” (1)李老师为什么说他搞错了?试用方程的知识给予解释; (2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元? 23.在平面直角坐标系中,若点P(x,y)的坐标满足x﹣2y+3=0,则我们称点P为“健康点”:若点Q(x,y)的坐标满足x+y﹣6=0,则我们称点Q为“快乐点”. (1)若点A既是“健康点”又是“快乐点”,则点A的坐标为 ; (2)在(1)的条件下,若B是x轴上的“健康点”,C是y轴上的“快乐点”,求△ABC的面积; (3)在(2)的条件下,若P为x轴上一点,且△BPC与△ABC面积相等,直接写出点P的坐标. 24.某数码专营店销售A,B两种品牌智能手机,这两种手机的进价和售价如表所示: A B 进价(元/部) 3300 3700 售价(元/部) 3800 4300 (1)该店销售记录显示,三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍,求该店三月份售出A种手机和B种手机各多少部? (2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B种手机数不低于A种手机数的,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案. 25.定义一种新运算“a※b”:当a≥b时,a※b=2a+b;当a<b时,a※b=2a﹣b. 例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24. (1)填空:(﹣2)※3= ; (2)若(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),则x的取值范围为 ; (3)已知(2x﹣6)※(9﹣3x)<7,求x的取值范围; (4)小明在计算(2x2﹣2x+4)※(x2+4x﹣6)时随意取了一个x的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由. 26.在平面直角坐标系中,点,,的坐标分别为,,,且,满足方程为二元一次方程. (1)求,的坐标. (2)若点为轴正半轴上的一个动点. ①如图1,当时,与的平分线交于点,求的度数; ②如图2,连接,交轴于点.若成立.设动点的坐标为,求的取值范围. 27.某超市分别以每盏150元,190元的进价购进A,B两种品牌的护眼灯,下表是近两天的销售情况. 销售日期 销售数量(盏) 销售收入(元) A品牌 B品牌 第一天 2 1 680 第二天 3 4 1670 (1)求A,B两种品牌护眼灯的销售价; (2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B品牌的护眼灯最多采购多少盏? 28.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况: (进价、售价均保持不变,利润 = 销售收入-进货成本) (1)求A、B两种型号的电风扇的销售单价; (2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台? (3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由. 29.如图,在平面直角坐标系中,点的坐标分别是,现同时将点分别向上平移2个单位长度,再向右平移2个单位长度,得到的对应点.连接. (1)写出点的坐标并求出四边形的面积. (2)在轴上是否存在一点,使得的面积是面积的2倍?若存在,请求出点的坐标;若不存在,请说明理由. (3)若点是直线上一个动点,连接,当点在直线上运动时,请直接写出与的数量关系. 30.学校美术组要去商店购买铅笔和橡皮,若购买60支铅笔和30块橡皮,则需按零售价购买,共支付30元;若购买90支铅笔和60块橡皮,则可按批发价购买,共支付40.5元.已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元. (1)求每支铅笔和每块橡皮的批发价各是多少元? (2)小亮同学用4元钱在这家商店按零售价买同样的铅笔和橡皮(两样都要买,4元钱恰好用完),共有哪几种购买方案? 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1)图见解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐标为:(a-2,b+1);(3)四边形ABCD的面积为22. 【分析】 (1)直接利用平移画出图形,再根据图形写出对应点的坐标进而得出答案; (2)利用平移规律进而得出对应点坐标的变化规律:向上平移1个单位,纵坐标加1;向左平移2个单位,横坐标减2; (3)利用四边形ABCD所在的最小矩形面积减去周围三角形面积进而得出答案. 【详解】 解:(1)如图所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1); (2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标为:(a-2,b+1); (3)四边形ABCD的面积为:6×6-×2×6-×2×4-×2×4=22. 【点睛】 此题主要考查了平移变换以及坐标系内四边形面积求法,正确得出对应点位置是解题关键. 2.(1)90°;(2)见解析;(3)不变,180° 【分析】 (1)根据邻补角的定义及角平分线的定义即可得解; (2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3),过,分别作,,根据平行线的性质及平角的定义即可得解. 【详解】 解(1),分别平分和, ,, , ; (2), ,即, , 是的平分线, , , 又, , 又在的内部, 平分; (3)如图,不发生变化,,过,分别作,, 则有, ,,,, ,, , ,, , , 不变. 【点睛】 此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 3.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数; ②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数. 【详解】 解:(1)过点E作EF∥AB, 则有∠BEF=∠B, ∵AB∥CD, ∴EF∥CD, ∴∠FED=∠D, ∴∠BED=∠BEF+∠FED=∠B+∠D; 故答案为:∠B;EF;CD;∠D; (2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA. ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=∠EBA+∠EDC. 即∠BED=∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°, ∴∠BED=∠EBA+∠EDC=65°. 答:∠BED的度数为65°; ②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°. ∴∠BEF=180°﹣∠EBA, ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=180°﹣∠EBA+∠EDC. 即∠BED=180°﹣∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=,∠EDC=∠ADC=, ∴∠BED=180°﹣∠EBA+∠EDC=180°﹣. 答:∠BED的度数为180°﹣. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 4.(1)20,20,;(2);(3)的值不变, 【分析】 (1)根据,即可计算和的值,再根据内错角相等可证; (2)先根据内错角相等证,再根据同旁内角互补和等量代换得出; (3)作的平分线交的延长线于,先根据同位角相等证,得,设,,得出,即可得. 【详解】 解:(1), ,, , ,, , ; 故答案为:20、20,; (2); 理由:由(1)得, , , , , , , ; (3)的值不变,; 理由:如图3中,作的平分线交的延长线于, , , ,, , , , 设,, 则有:, 可得, , . 【点睛】 本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键. 5.(1) ;(2)① ;② 【分析】 (1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可; (2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可; ②由(1)知,∠BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解. 【详解】 解:(1)如图,由题意可知, ∴, ∵, ∴, , 由折叠可知. (2)①由题(1)可知 , ∵, , 再由折叠可知: , ; ②由可知:, 由(1)知, , 又的度数比的度数大, , , , . 【点睛】 此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键. 6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ 【分析】 (1)根据∠OPA=∠QPB.可求出∠OPA的度数; (2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题; (3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ. 【详解】 解:(1)∵∠OPA=∠QPB,∠OPQ=82°, ∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°, (2)作PC∥m, ∵m∥n, ∴m∥PC∥n, ∴∠AOP=∠OPC=43°, ∠BQP=∠QPC=49°, ∴∠OPQ=∠OPC+∠QPC=43°+49°=92°, ∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°, (3)∠OPQ=∠ORQ. 理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC, ∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角, ∴∠AOP=∠DOR,∠BQP=∠RQC, ∴∠OPQ=∠ORQ. 【点睛】 本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的. 7.(1)2;3﹣;(2)1、2、3;(3)256,4 【分析】 (1)依照定义进行计算即可; (2)由题可知,,则可得满足题意的整数的的值为1、2、3; (3)由,可知,是某个整数的平方,又是符合条件的所有数中最大的数,则,再依次进行计算. 【详解】 解:(1)由定义可得,,, . 故答案为:2;. (2), ,即, 整数的值为1、2、3. 故答案为:1、2、3. (3),即, 可设,且是自然数, 是符合条件的所有数中的最大数, , , , , , 即. 故答案为:256,4. 【点睛】 本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键. 8.(1)A;(2)①B;②C;③B;(3)①③. 【分析】 (1)计算,结合计算结果即可进行判断; (2)①从A类数中任取两个数进行计算,即可求解; ②从A、B两类数中任取两个数进行计算,即可求解; ③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案; (3)根据m,n的余数之和,举例,观察即可判断. 【详解】 解:(1)根据题意, ∵, ∴2020被3除余数为1,属于A类; 故答案为:A. (2)①从A类数中任取两个数, 如:(1+4)÷3=1…2,(4+7)÷3=3…2,…… ∴两个A类数的和被3除余数为2, 则它们的和属于B类; ②从A、B类数中任取一数,与①同理, 如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,…… ∴从A、B类数中任取一数,则它们的和属于C类; ③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则 , ∴, ∴余数为2,属于B类; 故答案为:①B;②C;③B. (3)从A类数中任意取出m个数,从B类数中任意取出n个数, 余数之和为:m×1+n×2=m+2n, ∵最后的结果属于C类, ∴m+2n能被3整除,即m+2n属于C类,①正确; ②若m=1,n=1,则|mn|=0,不属于B类,②错误; ③观察可发现若m+2n属于C类,m,n必须是同一类,③正确; 综上,①③正确. 故答案为:①③. 【点睛】 本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答. 9.(1)1;5;(2)①3.807,0.807;②;. 【分析】 (1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案; (2)①根据布谷数的运算性质, g(14)=g(2×7)=g(2)+g(7),,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为,,再代入求解. 【详解】 解:(1)g(2)=g(21)=1, g(32)=g(25)=5; 故答案为1,32; (2)①g(14)=g(2×7)=g(2)+g(7), ∵g(7)=2.807,g(2)=1, ∴g(14)=3.807; g(4)=g(22)=2, ∴=g(7)-g(4)=2.807-2=0.807; 故答案为3.807,0.807; ②∵. ∴; . 【点睛】 本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键. 10.(1)48;(2)28 【分析】 (1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可. (2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可. 【详解】 解:(1)第一步:,,, , 能确定110592的立方根是个两位数. 第二步:的个位数是2,, 能确定110592的立方根的个位数是8. 第三步:如果划去110592后面的三位592得到数110, 而,则,可得, 由此能确定110592的立方根的十位数是4,因此110592的立方根是48; (2)第一步:,,, , 能确定21952的立方根是个两位数. 第二步:的个位数是2,, 能确定21952的立方根的个位数是8. 第三步:如果划去21952后面的三位952得到数21, 而,则,可得, 由此能确定21952的立方根的十位数是2,因此21952的立方根是28. 即, 故答案为:28. 【点睛】 本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度. 11.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01 【分析】 (1)观察已知等式,得到一般性规律,写出即可; (2)利用得出的规律计算即可得到结果; (3)归纳总结得到规律,写出即可; (4)利用得出的规律计算即可得到结果. 【详解】 解:(1),,,…… ,,,…… 由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位. 故答案为:两;右;一; (2)已知,,则;; 故答案为:12.25;0.3873; (3),,,…… 小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位; (4)∵,, ∴, ∴, ∴y=-0.01. 【点睛】 此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键. 12.(1)A;(2)①B;②C;③B;(3)①③. 【分析】 (1)计算,结合计算结果即可进行判断; (2)①从A类数中任取两个数进行计算,即可求解; ②从A、B两类数中任取两个数进行计算,即可求解; ③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案; (3)根据m,n的余数之和,举例,观察即可判断. 【详解】 解:(1)根据题意, ∵, ∴2020被3除余数为1,属于A类; 故答案为:A. (2)①从A类数中任取两个数, 如:(1+4)÷3=1…2,(4+7)÷3=3…2,…… ∴两个A类数的和被3除余数为2, 则它们的和属于B类; ②从A、B类数中任取一数,与①同理, 如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,…… ∴从A、B类数中任取一数,则它们的和属于C类; ③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则 , ∴, ∴余数为2,属于B类; 故答案为:①B;②C;③B. (3)从A类数中任意取出m个数,从B类数中任意取出n个数, 余数之和为:m×1+n×2=m+2n, ∵最后的结果属于C类, ∴m+2n能被3整除,即m+2n属于C类,①正确; ②若m=1,n=1,则|mn|=0,不属于B类,②错误; ③观察可发现若m+2n属于C类,m,n必须是同一类,③正确; 综上,①③正确. 故答案为:①③. 【点睛】 本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答. 13.(1);;6;(2)证明见解析;(3) ,理由见解析. 【详解】 分析:(1)求出CD的长度,再根据三角形的面积公式列式计算即可得解; (2)根据等角的余角相等解答即可; (3)首先证明∠ACD=∠ACE,推出∠DCE=2∠ACD,再证明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解决问题; 【解答】(1)解:如图1中, ∵|a+4|+(b-a-1)2=0, ∴a=-4,b=-3, ∵点C(0,-4),D(-3,-4), ∴CD=3,且CD∥x轴, ∴△BCD的面积=×4×3=6; 故答案为-4,-3,6. (2)如图2中, ∵∠CPQ=∠CQP=∠OPB,AC⊥BC, ∴∠CBQ+∠CQP=90°, 又∵∠ABQ+∠CPQ=90°, ∴∠ABQ=∠CBQ, ∴BQ平分∠CBA. (3)如图3中,结论:∠BEC=2∠BCO. 理由:∵AC⊥BC, ∴∠ACB=90°, ∴∠ACD+∠BCF=90°, ∵CB平分∠ECF, ∴∠ECB=∠BCF, ∴∠ACD+∠ECB=90°, ∵∠ACE+∠ECB=90°, ∴∠ACD=∠ACE, ∴∠DCE=2∠ACD, ∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°, ∴∠ACD=∠BCO, ∵C(0,-4),D(-3,-4), ∴CD∥AB, ∠BEC=∠DCE=2∠ACD, ∴∠BEC=2∠BCO, 点睛:本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质等知识,熟记性质并准确识图是解题的关键. 14.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析 【分析】 (1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°; (2)过过作交于,,推出,根据平行线的性质得出,即可得出答案; (3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案. 【详解】 解:(1)过作, , , ,, , ,, ; (2),理由如下: 如图3,过作交于, , , ,, ,, 又 ; (3)①当在延长线时(点不与点重合),; 理由:如图4,过作交于, , , ,, ,, , 又, ; ②当在之间时(点不与点,重合),. 理由:如图5,过作交于, , , ,, ,, , 又 . 【点睛】 本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角. 15.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不变,∠N=45° 【分析】 (1)利用非负数的和为零,各项分别为零,求出a,b的值; (2)如图,作DM∥x轴,结合题意可设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根据平角的定义可知∠OAD=90°-2y,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y,再结合图形即可得出∠APD的度数; (3)∠N的大小不变,∠N=45°,如图,过D作DE∥BC,过N作NF∥BC,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM=∠BMD+∠OAD,据此即可得到结论. 【详解】 (1)由,可得和, 解得 ∴A的坐标是(-2,0)、B的坐标是(0,3); (2)如图,作DM∥x轴 根据题意,设∠ADP=∠OAP=x,∠EAF=∠CAF=∠- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 学期 期末 压轴 复习 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文