成都市金牛中学七年级数学上册期末压轴题汇编.doc
《成都市金牛中学七年级数学上册期末压轴题汇编.doc》由会员分享,可在线阅读,更多相关《成都市金牛中学七年级数学上册期末压轴题汇编.doc(33页珍藏版)》请在咨信网上搜索。
成都市金牛中学七年级数学上册期末压轴题汇编 一、七年级上册数学压轴题 1.如图,数轴上有三个点、、,表示的数分别是、、,请回答: (1)若使、两点的距离与、两点的距离相等,则需将点向左移动______个单位. (2)若移动、、三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是_______个单位; (3)若在表示的点处有一只小青蛙,一步跳个单位长.小青蛙第次先向左跳步,第次再向右跳步,然后第次再向左跳步,第次再向右跳步按此规律继续跳下去,那么跳第次时,应跳_______步,落脚点表示的数是_______. (4)数轴上有个动点表示的数是,则的最小值是_______. 2.已知:b是立方根等于本身的负整数,且a、b满足(a+2b)2+|c+|=0,请回答下列问题: (1)请直接写出a、b、c的值:a=_______,b=_______,c=_______. (2)a、b、c在数轴上所对应的点分别为A、B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,则化简|m+|=________. (3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B、点C都以每秒1个单位的速度向左运动,同时点A以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与点B之间的距离表示为AB,请问:AB−AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出AB−AC的值. 3.已知数轴上,M表示-10,点N在点M的右边,且距M点40个单位长度,点P,点Q是数轴上的动点. (1)直接写出点N所对应的数; (2)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向左运动,设点P、Q在数轴上的D点相遇,求点D的表示的数; (3)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向右运动,问经过多少秒时,P,Q两点重合? 4.已知多项式,次数是b,4a与b互为相反数,在数轴上,点A表示a,点B表示数b. (1)a= ,b= ; (2)若小蚂蚁甲从点A处以3个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以4个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.(写出解答过程) (3)若小蚂蚁甲和乙约好分别从A,B两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s时一起重新回到原出发点A和B,设小蚂蚁们出发t(s)时的速度为v(mm/s),v与t之间的关系如下图,(其中s表示时间单位秒,mm表示路程单位毫米) t(s) 0<t≤2 2<t≤5 5<t≤16 v(mm/s) 10 16 8 ①当t为1时,小蚂蚁甲与乙之间的距离是 . ②当2<t≤5时,小蚂蚁甲与乙之间的距离是 .(用含有t的代数式表示) 5.阅读下面的材料并解答问题: 点表示数,点表示数,点表示数,且点到点的距离记为线段的长,线段的长可以用右边的数减去左边的数表示,即. 若是最小的正整数,且满足. (1)_________,__________. (2)若将数轴折叠,使得与点重合: ①点与数_________表示的点重合; ②若数轴上两点之间的距离为2018(在的左侧),且两点经折叠后重合,则两点表示的数是_______、__________. (3)点开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为秒,试探索:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出其值. 6.已知a是最大的负整数,b是的倒数,c比a小1,且a、b、c分别是A、B、C在数轴上对应的数.若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴负方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度. (1)在数轴上标出点A、B、C的位置; (2)运动前P、Q两点间的距离为 ;运动t秒后,点P,点Q运动的路程分别为 和 ; (3)求运动几秒后,点P与点Q相遇? (4)在数轴上找一点M,使点M到A、B、C三点的距离之和等于11,直接写出所有点M对应的数. 7.已知,A,B在数轴上对应的数分用a,b表示,且,数轴上动点P对应的数用x表示. (1)在数轴上标出A、B的位置,并直接写出A、B之间的距离; (2)写出的最小值; (3)已知点C在点B的右侧且BC=9,当数轴上有点P满足PB=2PC时, ①求P点对应的数的值; ②数轴上另一动点Q从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点Q能移动到与①中的点P重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动可以重合。 8.如图,一个电子跳蚤从数轴上的表示数a的点出发,我们把“向右运动两个单位或向左运动一个单位”作为一次操作,如:当时,则一次操作后跳蚤可能的位置有两个,所表示的数分别是2和5. (1)若,则两次操作后跳蚤所在的位置表示的数可能是多少? (2)若,且跳蚤向右运动了20次,向左运动了n次. ①它最后的位置所表示的数是多少?(用含n的代数式表示) ②若它最后的位置所表示的数为10,求n的值. (3)若,跳蚤共进行了若干次操作,其中有50次是向左运动,且最后的位置所表示的数为260,求操作的次数. 9.如图,在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0. (1)a= ,b= ,c= ; (2)若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合; (3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示) (4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值. 10.阅读理解:定义:A,B,C为数轴上三点,若点C到点A的距离是它到点B的时距离的n(n为大于1的常数)倍,则称点C是(A,B)的n倍点,且当C是(A,B)的n倍点或(B,A)的n倍点时,我们也称C是A和B两点的n倍点.例如,在图1中,点C是(A,B)的2倍点,但点C不是(B,A)的2倍点. (1)特值尝试. ①若,图1中,点________是(D,C)的2倍点.(填A或B) ②若,如图2,M,N为数轴上两个点,点M表示的数是,点N表示的数是4,数________表示的点是(M,N)的3倍点. (2)周密思考: 图2中,一动点P从N出发,以每秒2个单位的速度沿数轴向左运动t秒,若P恰好是M和N两点的n倍点,求所有符合条件的t的值.(用含n的式子表示) (3)拓展应用: 数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”.若(2)中满足条件的M和N两点的所有n倍点P均处于点N的“可视距离”内,请直接写出n的取值范围.(不必写出解答过程) 11.如图①,O是直线上的一点,是直角,平分. (1)若,则____________°,____________°; (2)将图①中的绕顶点O顺时针旋转至图②的位置,其他条件不变,若,求的度数(用含的式子表示); (3)将图①中的绕顶点O顺时针旋转至图③的位置,其他条件不变,直接写出和的度数之间的关系:__________________.(不用证明) 12.点A,B为数轴上的两点,点A对应的数为a,点B对应的数为3,a3=﹣8. (1)求A,B两点之间的距离; (2)若点C为数轴上的一个动点,其对应的数记为x,试猜想当x满足什么条件时,点C到A点的距离与点C到B点的距离之和最小.请写出你的猜想,并说明理由; (3)若P,Q为数轴上的两个动点(Q点在P点右侧),P,Q两点之间的距离为m,当点P到A点的距离与点Q到B点的距离之和有最小值4时,m的值为 . 13.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是的美好点. 例如;如图1,点A表示的数为,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是的美好点;又如,表示0的点D到点A的距离是1,到点B的距高是2,那么点D就不是的美好点,但点D是的美好点. 如图2,M,N为数轴上两点,点M所表示的数为,点N所表示的数为2. (1)点E,F,G表示的数分别是,6.5,11,其中是美好点的是________;写出美好点H所表示的数是___________. (2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,点P恰好为M和N的美好点? 14.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D=30°)的直角顶点放在点O处,一边OE在射线OA上,另一边OD与OC都在直线AB的上方. (1)将图1中的三角板绕点O以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OD恰好平分∠BOC. ①此时t的值为 ;(直接填空) ②此时OE是否平分∠AOC?请说明理由; (2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠DOE?请说明理由; (3)在(2)问的基础上,经过多长时间OC平分∠DOB?请画图并说明理由. 15.如图,O为直线AB上的一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°),的直角顶点放在O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周. (1)几秒后ON与OC重合? (2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t的值. (3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MOB?请画出图并说明理由. 16.如图1,平面内一定点A在直线EF的上方,点O为直线EF上一动点,作射线OA、OP、OA',当点O在直线EF上运动时,始终保持∠EOP=90°、∠AOP=∠A'OP,将射线OA绕点O顺时针旋转60°得到射线OB. (1)如图1,当点O运动到使点A在射线OP的左侧,若OA'平分∠POB,求∠BOF的度数; (2)当点O运动到使点A在射线OP的左侧,且∠AOE=3∠A'OB时,求的值; (3)当点O运动到某一时刻时,∠A'OB=130°,请直接写出∠BOP=_______度. 17.如图1,在平面内,已知点O在直线上,射线、均在直线的上方,(),,平分,与互余. (1)若,则________°; (2)当在内部时 ①若,请在图2中补全图形,求的度数; ②判断射线是否平分,并说明理由; (3)若,请直接写出的值. 18.定义:在同一平两内,有公共端点的三条射线中,一条射线是另两条射线组成夹角的角平分线,我们称这三条射线为“共生三线”. 如图为一量角器的平面示意图,为量角器的中心.作射线,,,并将其所对应的量角器外圈刻度分别记为,,. (1)若射线,,为“共生三线”,且为的角平分线. ①如图1,,,则______; ②当,时,请在图2中作出射线,,,并直接写出的值; ③根据①②的经验,得______(用含,的代数式表示). (2)如图3,,.在刻度线所在直线上方区域内,将,,按逆时针方向绕点同时旋转,旋转速度分别为每秒,,,若旋转秒后得到的射线,,为“共生三线”,求的值. 19.(1)探究:哪些特殊的角可以用一副三角板画出? 在①,②,③,④中,小明同学利用一副三角板画不出来的特殊角是 ;(填序号) (2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线,然后将一副三角板拼接在一起,其中角()的顶点与角()的顶点互相重合,且边、都在直线上.固定三角板不动,将三角板绕点按顺时针方向旋转一个角度,当边与射线第一次重合时停止. ①当平分时,求旋转角度; ②是否存在?若存在,求旋转角度;若不存在,请说明理由. 20.已知,如图,实数a、b、c在数轴上表示的点分别是点A、B、C,且a、b、c满足. (1)求a、b、c的值; (2)若点A沿数轴向左以每秒1个单位的速度运动,点B和点C沿数轴向右运动,速度分别是2个单位/秒、3个单位/秒.设运动时间为t(秒). ①2秒后,点A、B、C表示的数分别是 , , ; ②运动t秒后,求点B和点C之间的距离(用“BC”表示)和点A和点B之间的距离(用“AB”表示);(用含t的代数式表示) ③在②的基础上,请问:3×BC-AB的值是否随着时间t的变化而变化?若不变化,求这个不变的值;若变化,求这个值的变化范围; (3)若点A沿数轴向右以每秒1个单位的速度运动,点B和点C沿数轴向左运动,速度分别是2个单位/秒、3个单位/秒.设运动时间为t(秒).是否存在某一时刻,满足点A和点B之间的距离是点B和点C之间的距离的?若存在,直接写出时间t的值;若不存在,说明理由. 【参考答案】***试卷处理标记,请不要删除 一、七年级上册数学压轴题 1.(1)3;(2)3,7;(3)197,;(4)9. 【分析】 (1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得; (2)分为三种:移动点B、C;移动点A、C;移动点A、B,再 解析:(1)3;(2)3,7;(3)197,;(4)9. 【分析】 (1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得; (2)分为三种:移动点B、C;移动点A、C;移动点A、B,再利用数轴的定义分别求出移动所走的距离和即可得; (3)先根据前4次归纳类推出一般规律,再列出运算式子,计算有理数的加减法即可得; (4)分,,和数四种情况,再分别结合数轴的定义、化简绝对值即可得. 【详解】 (1)设需将点C向左移动x个单位, 由题意得:, 解得, 即需将点C向左移动3个单位, 故答案为:3; (2), , , 由题意,分以下三种情况: ①移动点B、C, 把点B向左移动2个单位,点C向左移动7个单位, 此时移动所走的距离和为; ②移动点A、C, 把点A向右移动2个单位,点C向左移动5个单位, 此时移动所走的距离和为; ③移动点A、B, 把点A向右移动7个单位,点B向右移动5个单位, 此时移动所走的距离和为; 综上,移动方法有3种,其中移动所走的距离和最小的是7个单位, 故答案为:3,7; (3)第次跳的步数为, 第次跳的步数为, 第次跳的步数为, 第次跳的步数为, 归纳类推得:第n次跳的步数为,其中n为正整数, 则第99次跳的步数为, 落脚点表示的数为, , , , 故答案为:197,; (4)由题意,分以下四种情况: ①当时, 则; ②当时, 则, , ; ③当时, 则, , ; ④当时, 则; 综上,, 则的最小值是9, 故答案为:9. 【点睛】 本题考查了数轴、化简绝对值、一元一次方程的应用等知识点,熟练掌握数轴的定义是解题关键. 2.(1)2;-1;;(2)-m-;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC= 【分析】 (1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c的值; (2 解析:(1)2;-1;;(2)-m-;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC= 【分析】 (1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c的值; (2)根据题意,先求出m的取值范围,即可求出m+<0,然后根据绝对值的性质去绝对值即可; (3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论. 【详解】 解:(1)∵b是立方根等于本身的负整数, ∴b=-1 ∵(a+2b)2+|c+|=0,(a+2b)2≥0,|c+|≥0 ∴a+2b=0,c+=0 解得:a=2,c= 故答案为:2;-1;; (2)∵b=-1,c=,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m, ∴-1<m< ∴m+<0 ∴|m+|= -m- 故答案为:-m-; (3)运动前AB=2-(-1)=3,AC=2-()= 由题意可知:运动后AB=3+2t+t=3+3t,AC=+2t+t=+3t ∴AB-AC=(3+3t)-(+3t)= ∴AB−AC的值不会随着时间t的变化而改变,AB-AC=. 【点睛】 此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键. 3.(1)30;(2)15;(3)20秒 【分析】 (1)根据数轴上两点之间的距离得出结果; (2)利用时间=路程÷速度和算出相遇时间,再计算出点D表示的数; (3)利用时间=路程÷速度差算出相遇时间即 解析:(1)30;(2)15;(3)20秒 【分析】 (1)根据数轴上两点之间的距离得出结果; (2)利用时间=路程÷速度和算出相遇时间,再计算出点D表示的数; (3)利用时间=路程÷速度差算出相遇时间即可. 【详解】 解:(1)-10+40=30, ∴点N表示的数为30; (2)40÷(3+5)=5秒, -10+5×5=15, ∴点D表示的数为15; (3)40÷(5-3)=20, ∴经过20秒后,P,Q两点重合. 【点睛】 本题考查了数轴上两点之间的距离,解题的关键是掌握相遇问题和追击问题之间的数量关系. 4.(1)-2,8;(2)秒或10秒;(3)①30mm;②32t-14 【分析】 (1)根据多项式的次数的定义可得b值,再由相反数的定义可得a值; (2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤ 解析:(1)-2,8;(2)秒或10秒;(3)①30mm;②32t-14 【分析】 (1)根据多项式的次数的定义可得b值,再由相反数的定义可得a值; (2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t,OB=8-4t;②甲向左运动,乙向右运动,即t>2时,此时OA=2+3t,OB=4t-8; (3)①令t=1,根据题意列出算式计算即可; ②先得出小蚂蚁甲和乙爬行的路程及各自爬行的返程的路程,则可求得小蚂蚁甲与乙之间的距离. 【详解】 解:(1)∵多项式4x6y2-3x2y-x-7,次数是b, ∴b=8; ∵4a与b互为相反数, ∴4a+8=0, ∴a=-2. 故答案为:-2,8; (2)分两种情况讨论: ①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t,OB=8-4t; ∵OA=OB, ∴2+3t=8-4t, 解得:t=; ②甲向左运动,乙向右运动,即t>2时,此时OA=2+3t,OB=4t-8; ∵OA=OB, ∴2+3t=4t-8, 解得:t=10; ∴甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t为秒或10秒; (3)①当t为1时, 小蚂蚁甲与乙之间的距离是:8+10×1-(-2-10×1)=30mm; ②∵小蚂蚁甲和乙同时出发以相同的速度爬行, ∴小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于: 10×2+16×3+8×11=156(mm), ∵原路返回,刚好在16s时一起重新回到原出发点A和B, ∴小蚂蚁甲和乙返程的路程都等于78mm, ∴甲乙之间的距离为:8-(-2)+10×2×2+16×(t-2)×2=32t-14. 故答案为:32t-14. 【点睛】 本题考查了一元一次方程在数轴上两点之间的距离问题中的应用,具有方程思想并会分类讨论是解题的关键. 5.(1)1,5;(2)①3;②-1007,1011;(3)不变,值为8 【分析】 (1)利用非负性可求解; (2)①由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解; ②由折叠的性质可求解 解析:(1)1,5;(2)①3;②-1007,1011;(3)不变,值为8 【分析】 (1)利用非负性可求解; (2)①由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解; ②由折叠的性质可求解; (3)利用两点距离公式分别求出AC,AB,表示出3AC-5AB,再化简即可求解. 【详解】 解:(1)∵b是最小的正整数, ∴b=1, ∵(c-5)2+|a+b|=0. ∴c=5,a=-b=-1, 故答案为:1,5; (2)①∵将数轴折叠,使得A与C点重合: ∴AC的中点表示的数是(-1+5)÷2=2, ∴与点B重合的数=2-1+2=3; ②点P表示的数为2-2018÷2=-1007, 点Q表示的数为2+2018÷2=1011, 故答案为:-1007,1011; (3)3AC-5AB的值不变. 理由是: 点A表示的数为:-1-2t, 点B表示的数为:1+t, 点C表示的数为:5+3t, ∴AC=5+3t-(-1-2t)=6+5t,AB=1+t-(-1-2t)=2+3t, 3AC-5AB=3(6+5t)-5(2+3t)=8, 所以3AC-5AB的值不变,为8. 【点睛】 本题考查了数轴,非负性,折叠的性质,两点距离公式,灵活运用这些性质解决问题是本题的关键. 6.(1)见解析;(2)6,3t,t;(3)1.5;(4)3或-3. 【分析】 (1)理解与整数、倒数有关概念,能够正确在数轴上找到所对应的点; (2)根据数轴上两点间的距离的求法,以及路程=速度×时间 解析:(1)见解析;(2)6,3t,t;(3)1.5;(4)3或-3. 【分析】 (1)理解与整数、倒数有关概念,能够正确在数轴上找到所对应的点; (2)根据数轴上两点间的距离的求法,以及路程=速度×时间进行求解; (3)根据速度和×时间=路程和,列出方程求解即可; (4)分当M在C点左侧,当M在线段AC上,当M在线段AB上(不含点A),当M在点B的右侧,四种情况列出方程求解. 【详解】 解:(1)∵a是最大的负整数, ∴a=-1, ∵b是的倒数, ∴b=5, ∵c比a小1, ∴c=-2, 如图所示: (2)运动前P、Q两点之间的距离为5-(-1)=6; 运动t秒后,点P,点Q运动的路程分别为3t和t, 故答案为:6,3t,t; (3)依题意有3t+t=6, 解得t=1.5. 故运动1.5秒后,点P与点Q相遇; (4)设点M表示的数为x,使P到A、B、C的距离和等于11, ①当M在C点左侧,(-1)-x+5-x+(-2)-x=11. 解得x=-3,即M对应的数是-3. ②当M在线段AC上,x-(-2)-1-x+5-x=11, 解得:x=-5(舍); ③当M在线段AB上(不含点A),x-(-1)+5-x+x-(-2)=11, 解得x=3,即M对应的数是3. ④当M在点B的右侧,x-(-1)+x-5+x-(-2)=11, 解得:x=(舍), 综上所述,点M表示的数是3或-3. 【点睛】 此题主要考查了一元一次方程的应用,与数轴有关计算问题,能够正确表示数轴上两点间的距离. 7.(1)A、B位置见解析,AB=30;(2)30;(3)①8或-4;②能,第8次 【分析】 (1)求出a、b的值,在数轴表示即可,求出AB的距离; (2)|x-20|+|x+10|的最小值,就是数轴上 解析:(1)A、B位置见解析,AB=30;(2)30;(3)①8或-4;②能,第8次 【分析】 (1)求出a、b的值,在数轴表示即可,求出AB的距离; (2)|x-20|+|x+10|的最小值,就是数轴上表示20的点,与表示-10的点之间的距离; (3)①求出c的值,设出点P对应的数,用距离列方程求解即可; ②点Q移动时,每一次对应的数分别列举出来,发现规律,得出结论. 【详解】 解:(1)|a-20|+(b+10)2=0,解得:a=20,b=-10; ∴AB=20-(-10)=30; (2)|x-a|+|x-b|=|x-20|+|x+10|, 当x位于点A与点B之间时,即,-10≤x≤20时,|x-20|+|x+10|的值最小,最小值为AB=30, 答:|x-20|+|x+10|的最小值为30; (3)①点C在点B的右侧且|BC|=9,因此点C所表示的数为-1, 设点P表示的数为x, |x+10|=2|x+1|,解得x=8或x=-4; ②点Q每次移动对应在数轴上的数, 第1次:-1,第3次:-3,第5次:-5,…… 第2次:2,第4次:4,第6次:6,…… 因此点Q能移动到与①中的点P重合的位置,与8重合时,移动第8次,不可能与-4重合, 答:点Q能移动到与①中的点P重合的位置,移动的次数为8次. 【点睛】 本题考查数轴表示数的意义和方法,理解数轴上两点之间距离的计算方法,是解决问题的关键. 8.(1)-2或1或4;(2)①43-n;②33;(3)210次 【分析】 (1)先得出一次操作后所可能表示的数,再得出第二次操作后的数; (2)①根据题意列出代数式即可; ②令①中代数式的值为10,求 解析:(1)-2或1或4;(2)①43-n;②33;(3)210次 【分析】 (1)先得出一次操作后所可能表示的数,再得出第二次操作后的数; (2)①根据题意列出代数式即可; ②令①中代数式的值为10,求出n值即可; (3)设跳蚤向右运动了m次,根据题意列出方程,解出m值,再加上50即可. 【详解】 解:(1)∵a=0, 则一次操作后表示的数为-1或2, 则两次操作后表示的数为-2或1或4; (2)①由题意可得: a=3时,向右运动了20次,向左运动了n次, ∴最后表示的数为:3+20×2-n=43-n; ②令43-n=10, 则n=33; (3)设跳蚤向右运动了m次, 根据题意可得: -10-50+2m=260, 则m=160, ∴操作次数为50+160=210. 【点睛】 本题考查了数轴,一元一次方程,解题的关键是要理解“一次操作”的意义. 9.(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC﹣2AB=12. 【分析】 (1)利用|a+2|+(c−7)2=0,得a+2=0,c−7=0,解得a,c 解析:(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC﹣2AB=12. 【分析】 (1)利用|a+2|+(c−7)2=0,得a+2=0,c−7=0,解得a,c的值,由b是最小的正整数,可得b=1; (2)先求出对称点,即可得出结果; (3)AB原来的长为3,所以AB=t+2t+3=3t+3,再由AC=9,得AC=t+4t+9=5t+9,由原来BC=6,可知BC=4t−2t+6=2t+6; (4)由 3BC−2AB=3(2t+6)−2(3t+3)求解即可. 【详解】 (1)∵|a+2|+(c−7)2=0, ∴a+2=0,c−7=0, 解得a=−2,c=7, ∵b是最小的正整数, ∴b=1; 故答案为:−2;1;7. (2)(7+2)÷2=4.5, 对称点为7−4.5=2.5, 2.5+(2.5−1)=4; 故答案为:4. (3)依题意可得AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6; 故答案为:3t+3;5t+9;2t+6. (4)不变. 3BC−2AB=3(2t+6)−2(3t+3)=12. 【点睛】 本题主要考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离. 10.(1)①B ;②或7;(2)或或;(3) 【分析】 (1)①直接根据新定义的概念即可得出答案; ②根据新定义的概念列绝对值方程求解即可得出答案; (2)设点P所表示的数为,再根据新定义的概念列方程求 解析:(1)①B ;②或7;(2)或或;(3) 【分析】 (1)①直接根据新定义的概念即可得出答案; ②根据新定义的概念列绝对值方程求解即可得出答案; (2)设点P所表示的数为,再根据新定义的概念列方程求解即可; (3)分,,三种情况分别表示出PN的值,再根据PN的范围列不等式组求解即可. 【详解】 (1)①由数轴可知, 点A表示的数为,点B表示的数为2, 点C表示的数为1,点D表示的数为0, ,, , 数点A不是【D,C】的2倍点, ,, , ∴点B是【D,C】的2倍点, 故答案为:B. ②若点C是点【M,N】的3倍点, , 设点C表示的数为, ,, , 即或, 解得或, 数或7表示的点是【M,N】的3倍点. (2)设点P所表示的数为, 点P是M,N两点的倍点, 当点P是【M,N】的n倍点时, , , 或, 解得或, , , 当点P是【N,M】的n倍点时,, ,, 或,解得或, 符合条件的的值为或或. (3), 当时,, 当时,, 当时,, 点P均在点N的可视点距离之内, ,解得, 的取值范围是. 【点睛】 本题考查了倍点的概念,解题的关键是掌握倍点的两种不同情况. 11.(1)60°,15°;(2)∠DOE;(3)∠AOC=360°-2∠DOE. 【分析】 (1)由已知可求出∠BOC=180°-∠AOC=150°,∠BOD=180°-∠COD-∠AOC=60°,再由 解析:(1)60°,15°;(2)∠DOE;(3)∠AOC=360°-2∠DOE. 【分析】 (1)由已知可求出∠BOC=180°-∠AOC=150°,∠BOD=180°-∠COD-∠AOC=60°,再由∠COD是直角,OE平分∠BOC利用角的和差即可求出∠DOE的度数; (2)由∠AOC的度数可以求得∠BOC的度数,由OE平分∠BOC,可以求得∠COE的度数,又由∠DOC=90°可以求得∠DOE的度数; (3)由∠COD是直角,OE平分∠BOC,∠BOC+∠AOC=180°,可以建立各个角之间的关系,从而可以得到∠AOC和∠DOE的度数之间的关系. 【详解】 解:(1)∵, ∴∠BOC=180°-∠AOC=150°, ∵OE平分∠BOC, ∴∠COE=∠BOC=×150°=75°, 又∵∠COD是直角, ∴∠BOD=90°-∠AOC=60°,∠DOE=∠COD-∠COE=90°-75°=15°, 故答案为:60°,15°; (2)∵, ∴∠BOC=180°-∠AOC=180°-α, ∵OE平分∠BOC, ∴∠COE=∠BOC=, 又∵∠COD是直角, ∴∠DOE=∠COD-∠COE=; (3)∠AOC=360°-2∠DOE; 理由:∵OE平分∠BOC, ∴∠BOE=∠COE, 则得∠AOC=180°-∠BOC=180°-2∠COE=180°-2(∠DOE-90°), 所以得:∠AOC=360°-2∠DOE; 故答案为:∠AOC=360°-2∠DOE. 【点睛】 本题考查角的计算、角平分线的性质,解题的关键是根据题目中的信息,建立各个角之间的关系,然后找出所求问题需要的条件. 12.(1)5;(2)当﹣2<x<3时,点C到A点的距离与点C到B点的距离之和最小,最小值为5,见详解;(3)1或9 【分析】 (1)先根据立方根的定义求出a,再根据两点之间的距离公式即可求解; (2)当 解析:(1)5;(2)当﹣2<x<3时,点C到A点的距离与点C到B点的距离之和最小,最小值为5,见详解;(3)1或9 【分析】 (1)先根据立方根的定义求出a,再根据两点之间的距离公式即可求解; (2)当点C在数轴上A、B两点之间时,点C到A点的距离与点C到B点的距离之和最小,依此即可求解; (3)分两种情况:点P在点A的左边,点P在点B的右边,进行讨论即可求解. 【详解】 解:(1)∵a3=﹣8. ∴a=﹣2, ∴AB=|3﹣(﹣2)|=5; (2)点C到A的距离为|x+2|,点C到B的距离为|x﹣3|, ∴点C到A点的距离与点C到B点的距离之和为|x+2|+|x﹣3|, 当距离之和|x+2|+|x﹣3|的值最小,﹣2<x<3, 此时的最小值为3﹣(﹣2)=5, ∴当﹣2<x<3时,点C到A点的距离与点C到B点的距离之和最小,最小值为5; (3)设点P所表示的数为x, ∵PQ=m,Q点在P点右侧, ∴点Q所表示的数为x+m, ∴PA=|x+2|,QB=|x+m﹣3| ∴点P到A点的距离与点Q到B点的距离之和为:PA+QB=|x+2|+|x+m﹣3| 当x在﹣2与3﹣m之间时,|x+2|+|x+m﹣3|最小,最小值为|﹣2﹣(3﹣m)|=4, ①﹣2﹣(3﹣m)=4,解得,m=9, ②(3﹣m)﹣(﹣2)=4时,解得,m=1, 故答案为:1或9. 【点睛】 本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键. 13.(1)G,-4或-16;(2)1.5或3或9 【分析】 (1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N的距离 解析:(1)G,-4或-16;(2)1.5或3或9 【分析】 (1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,在点的移动过程中注意到两个点的距离的变化. (2)根据美好点的定义,分情况分别确定P点的位置,进而可确定t的值. 【详解】 解:(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件, 故答案是:G. 结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,点N的右侧不存在满足条件的点,点M和N之间靠近点M一侧应该有满足条件的点,进而可以确定-4符合条件.点M的左侧距离点M的距离等于点M和点N的距离的点符合条件,进而可得符合条件的点是-16. 故答案是:-4或-16. (2)根据美好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况, 第一情况:当P为【M,N】的美好点,点P在M,N之间,如图1,- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成都市 金牛 中学 七年 级数 上册 期末 压轴 汇编
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文