七年级数学下册期末压轴题试卷及答案(一).doc
《七年级数学下册期末压轴题试卷及答案(一).doc》由会员分享,可在线阅读,更多相关《七年级数学下册期末压轴题试卷及答案(一).doc(45页珍藏版)》请在咨信网上搜索。
一、解答题 1.如图,在平面直角坐标系中,点的坐标分别为(1,0)、(-2,0),现同时将点分别向上平移2个单位,再向左平移1个单位,分别得到点的对应点,连接、、. (1)若在轴上存在点,连接,使S△ABM =S□ABDC,求出点的坐标; (2)若点在线段上运动,连接,求S=S△PCD+S△POB的取值范围; (3)若在直线上运动,请直接写出的数量关系. 2.已知,.点在上,点在 上. (1)如图1中,、、的数量关系为: ;(不需要证明);如图2中,、、的数量关系为: ;(不需要证明) (2)如图 3中,平分,平分,且,求的度数; (3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数. 3.已知AB∥CD,∠ABE与∠CDE的角分线相交于点F. (1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数; (2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数; (3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系 4.如图,已知,是的平分线. (1)若平分,求的度数; (2)若在的内部,且于,求证:平分; (3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围. 5.已知直线,点P为直线、所确定的平面内的一点. (1)如图1,直接写出、、之间的数量关系 ; (2)如图2,写出、、之间的数量关系,并证明; (3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,,求的度数. 6.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转. (1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为 ; (2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′. 7.定义:对任意一个两位数,如果满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与的商记为 例如:,对调个位数字与十位数字后得到新两位数是,新两位数与原两位数的和为,和与的商为,所以 根据以上定义,完成下列问题: (1)填空:①下列两位数:,,中,“奇异数”有 . ②计算: . . (2)如果一个“奇异数”的十位数字是,个位数字是,且请求出这个“奇异数” (3)如果一个“奇异数”的十位数字是,个位数字是,且满足,请直接写出满足条件的的值. 8.规律探究,观察下列等式: 第1个等式: 第2个等式: 第3个等式: 第4个等式: 请回答下列问题: (1)按以上规律写出第5个等式:= ___________ = ___________ (2)用含n的式子表示第n个等式:= ___________ = ___________(n为正整数) (3)求 9.对非负实数“四舍五入”到各位的值记为.即:当为非负整数时,如果,则;反之,当为非负整数时,如果,则. 例如:,. (1)计算: ; ; (2)①求满足的实数的取值范围, ②求满足的所有非负实数的值; (3)若关于的方程有正整数解,求非负实数的取值范围. 10.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A、B两点表示的数分别为___________,____________; (2)请你参照上面的方法: ①把图3中的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长___________.(注:小正方形边长都为1,拼接不重叠也无空隙) ②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及.(图中标出必要线段的长) 11.阅读下面的文字,解答问题:大家知道是无理数,而无理是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是的小数部分,又例如:∵,即,∴的整数部分为2,小数部分为。 请解答 (1)的整数部分是______,小数部分是_______。 (2)如果的小数部分为a,的整数部分为b,求的值。 (3)已知x是的整数部分,y是其小数部分,直接写出的值. 12.对非负实数“四舍五入”到各位的值记为.即:当为非负整数时,如果,则;反之,当为非负整数时,如果,则. 例如:,. (1)计算: ; ; (2)①求满足的实数的取值范围, ②求满足的所有非负实数的值; (3)若关于的方程有正整数解,求非负实数的取值范围. 13.已知,在平面直角坐标系中,AB⊥x轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C. (1)则a= ,b= ,点C坐标为 ; (2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式; (3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值. 14.如图1,//,点、分别在、上,点在直线、之间,且. (1)求的值; (2)如图2,直线分别交、的角平分线于点、,直接写出的值; (3)如图3,在内,;在内,,直线分别交、分别于点、,且,直接写出的值. 15.已知A(0,a)、B(b,0),且+(b﹣4)2=0. (1)直接写出点A、B的坐标; (2)点C为x轴负半轴上一点满足S△ABC=15. ①如图1,平移直线AB经过点C,交y轴于点E,求点E的坐标; ②如图2,若点F(m,10)满足S△ACF=10,求m. (3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l上取两点G、H(点H在点G右侧),满足HB=8,GD=6.当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最大值. 16.若关于x的方程ax+b=0(a≠0)的解与关于y的方程cy+d=0(c≠0)的解满足﹣1≤x﹣y≤1,则称方程ax+b=0(a≠0)与方程cy+d=0(c≠0)是“友好方程”.例如:方程2x﹣1=0的解是x=0.5,方程y﹣1=0的解是y=1,因为﹣1≤x﹣y≤1,方程2x﹣1=0与方程y﹣1=0是“友好方程”. (1)请通过计算判断方程2x﹣9=5x﹣2与方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是不是“友好方程”. (2)若关于x的方程3x﹣3+4(x﹣1)=0与关于y的方程+y=2k+1是“友好方程”,请你求出k的最大值和最小值. 17.在平面直角坐标系中,已知线段,点的坐标为,点的坐标为,如图1所示. (1)平移线段到线段,使点的对应点为,点的对应点为,若点的坐标为,求点的坐标; (2)平移线段到线段,使点在轴的正半轴上,点在第二象限内(与对应, 与对应),连接如图2所示.若表示△BCD的面积),求点、的坐标; (3)在(2)的条件下,在轴上是否存在一点,使表示△PCD的面积)?若存在,求出点的坐标; 若不存在,请说明理由. 18.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2). (1)直接写出点E的坐标 ;D的坐标 (3)点P是线段CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x, y,z之间的数量关系,并证明你的结论. 19.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题: (1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案; (3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费. 20.如图,,是的平分线,和的度数满足方程组, (1)求和的度数; (2)求证:. (3)求的度数. 21.已知AM∥CN,点B为平面内一点,AB⊥BC于B. (1)如图1,过点B作BD⊥AM于点D,∠BAD与∠C有何数量关系,并说明理由; (2)如图2,在(1)问的条件下,点E,F在DM上,连接BE,BF,CF,若BF平分∠DBC,BE平分∠ABD,∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠ABE的度数. 22.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元. (1)求A,B两种奖品的单价; (2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由. 23.一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为,所以2534 是“7类诚勤数”. (1)请判断7441和5436是否为“诚勤数”并说明理由; (2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值. 24.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.” (1)李老师为什么说他搞错了?试用方程的知识给予解释; (2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元? 25.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿运动,最终到达点D,若点Q运动时间为秒. (1)当时, 平方厘米;当时, 平方厘米; (2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求的取值范围; (3)若的面积为平方厘米,直接写出值. 26.阅读材料: 关于x,y的二元一次方程ax+by=c有一组整数解,则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解. 小明参考阅读材料,解决该问题如下: 解:该方程一组整数解为,则全部整数解可表示为(t为整数). 因为解得.因为t为整数,所以t=0或-1. 所以该方程的正整数解为和 . (1)方程3x-5y=11的全部整数解表示为:(t为整数),则= ; (2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解; (3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案. 27.阅读材料:形如的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得,然后同时除以2,得. 解决下列问题: (1)请你写一个双连不等式并将它转化为不等式组; (2)利用不等式的性质解双连不等式; (3)已知,求的整数值. 28.在平面直角坐标系xOy中.点A,B,P不在同一条直线上.对于点P和线段AB给出如下定义:过点P向线段AB所在直线作垂线,若垂足Q落在线段AB上,则称点P为线段AB的内垂点.若垂足Q满足|AQ-BQ|最小,则称点P为线段AB的最佳内垂点.已知点A(﹣2,1),B(1,1),C(﹣4,3). (1)在点P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,线段AB的内垂点为 ; (2)点M是线段AB的最佳内垂点且到线段AB的距离是2,则点M的坐标为 ; (3)点N在y轴上且为线段AC的内垂点,则点N的纵坐标n的取值范围是 ; (4)已知点D(m,0),E(m+4,0),F(2m,3).若线段CF上存在线段DE的最佳内垂点,求m的取值范围. 29.定义:如果一个两位数a的十位数字为m,个位数字为n,且、、,那么这个两位数叫做“互异数”. 将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为. 例如:,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为,和与11的商为,所以. 根据以上定义,解答下列问题: (1)填空:①下列两位数:20,21,22中,“互异数”为________; ②计算:________;________;(m、n分别为一个两位数的十位数字与个位数字) (2)如果一个“互异数”b的十位数字是x,个位数字是y,且;另一个“互异数”c的十位数字是,个位数字是,且,请求出“互异数”b和c; (3)如果一个“互异数”d的十位数字是x,个位数字是,另一个“互异数”e的十位数字是,个位数字是3,且满足,请直接写出满足条件的所有x的值________; (4)如果一个“互异数”f的十位数字是,个位数字是x,且满足的互异数有且仅有3个,则t的取值范围________. 30.如图,在平面直角坐标系中,已知,,,,满足.平移线段得到线段,使点与点对应,点与点对应,连接,. (1)求,的值,并直接写出点的坐标; (2)点在射线(不与点,重合)上,连接,. ①若三角形的面积是三角形的面积的2倍,求点的坐标; ②设,,.求,,满足的关系式. 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1)(0,4)或(0,-4);(2);(3)答案见解析 【解析】 (1)先根据S△ABM =S□ABDC,得出△ABM的高为4,再根据三角形面积公式得到M点的坐标; (2)先计算出S梯形OBDC=5,再讨论:当点P运动到点B时,S△POC的最小值=2,当点P运动到点D时,S△POC的最大值=3,即可判断S=S△PCD+S△POB的取值范围的取值范围; (3)分类讨论:当点P在BD上,如图1,作PE∥CD,根据平行线的性质得CD∥PE∥AB,则∠DCP=∠EPC,∠BOP=∠EPO,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO; 当点P在线段BD的延长线上时,如图2,同样有∠DCP=∠EPC,∠BOP=∠EPO,由于∠EPO-∠EPC=∠BOP-∠DCP,于是∠BOP-∠DCP=∠CPO;同理可得当点P在线段DB的延长线上时,∠DCP-∠BOP=∠CPO. 解:(1)由题意,得C(0,2) ∴□ABDC的高为2 若S△ABM =S□ABDC,则△ABM的高为4 又∵点M是y轴上一点 ∴点M的坐标为(0,4)或(0,-4) (2)∵B(-2,0),O(0,0) ∴OB=2 由题意,得C(0,2),D(-3,2) ∴OC=2,CD=3 ∴S梯形OBDC= 点在线段上运动, 当点运动到端点B时,△PCO的面积最小,为 当点运动到端点D时,△PCO的面积最大,为 ∴S=S△PCD+S△POB= S梯形OBDC-S△PCO=5-S△PCO ∴S的最大值为5-2=3,最小值为5-3=2 故S的取值范围是: (3)如图: 当点在线段上运动时, 当点在射线上运动时, 当点在射线上运动时, 点睛:本题主要考查坐标与图形的性质及三角形的面积.利用分类讨论思想,并构造辅助线利用平行线的性质推理是解题的关键. 2.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解; (3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解. 【详解】 解:(1)过E作EHAB,如图1, ∴∠BME=∠MEH, ∵ABCD, ∴HECD, ∴∠END=∠HEN, ∴∠MEN=∠MEH+∠HEN=∠BME+∠END, 即∠BME=∠MEN−∠END. 如图2,过F作FHAB, ∴∠BMF=∠MFK, ∵ABCD, ∴FHCD, ∴∠FND=∠KFN, ∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND, 即:∠BMF=∠MFN+∠FND. 故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. (2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. ∵NE平分∠FND,MB平分∠FME, ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END, ∵2∠MEN+∠MFN=180°, ∴2(∠BME+∠END)+∠BMF−∠FND=180°, ∴2∠BME+2∠END+∠BMF−∠FND=180°, 即2∠BMF+∠FND+∠BMF−∠FND=180°, 解得∠BMF=60°, ∴∠FME=2∠BMF=120°; (3)∠FEQ的大小没发生变化,∠FEQ=30°. 由(1)知:∠MEN=∠BME+∠END, ∵EF平分∠MEN,NP平分∠END, ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END, ∵EQNP, ∴∠NEQ=∠ENP, ∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME, ∵∠BME=60°, ∴∠FEQ=×60°=30°. 【点睛】 本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键. 3.(1)65°;(2);(3)2n∠M+∠BED=360° 【分析】 (1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义和三角形外角的性质可求∠M的度数; (2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代换即可求解; (3)由(2)的方法可得到2n∠M+∠BED=360°. 【详解】 解:(1)如图1,作,,连结, , , ,,,, , , , 和的角平分线相交于, , , 、分别是和的角平分线, ,, , ; (2)如图1,,, ,, 与两个角的角平分线相交于点, ,, , , , ; (3)由(2)结论可得,,, 则. 【点睛】 本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质. 4.(1)90°;(2)见解析;(3)不变,180° 【分析】 (1)根据邻补角的定义及角平分线的定义即可得解; (2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3),过,分别作,,根据平行线的性质及平角的定义即可得解. 【详解】 解(1),分别平分和, ,, , ; (2), ,即, , 是的平分线, , , 又, , 又在的内部, 平分; (3)如图,不发生变化,,过,分别作,, 则有, ,,,, ,, , ,, , , 不变. 【点睛】 此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 5.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55° 【分析】 (1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°; (2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C; (3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG-∠GEH可得答案. 【详解】 解:(1)∠A+∠C+∠APC=360° 如图1所示,过点P作PQ∥AB, ∴∠A+∠APQ=180°, ∵AB∥CD, ∴PQ∥CD, ∴∠C+∠CPQ=180°, ∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°; (2)∠APC=∠A+∠C, 如图2,作PQ∥AB, ∴∠A=∠APQ, ∵AB∥CD, ∴PQ∥CD, ∴∠C=∠CPQ, ∵∠APC=∠APQ-∠CPQ, ∴∠APC=∠A-∠C; (3)由(2)知,∠APC=∠PAB-∠PCD, ∵∠APC=30°,∠PAB=140°, ∴∠PCD=110°, ∵AB∥CD, ∴∠PQB=∠PCD=110°, ∵EF∥BC, ∴∠BEF=∠PQB=110°, ∵EF∥BC, ∴∠BEF=∠PQB=110°, ∵∠PEG=∠PEF, ∴∠PEG=∠FEG, ∵EH平分∠BEG, ∴∠GEH=∠BEG, ∴∠PEH=∠PEG-∠GEH =∠FEG-∠BEG =∠BEF =55°. 【点睛】 此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 6.(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′ 【分析】 (1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论; (2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间. 【详解】 解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°, 过O作OE∥AB, ∵AB∥CD, ∴AB∥OE∥CD, ∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°, ∴∠POQ=90°, ∴PB′⊥QC′, 故答案为:PB′⊥QC′; (2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°, ∵AB∥CD,PB′∥QC′, ∴∠BPB′=∠PEC=∠CQC′, 即12t=45+3t, 解得,t=5; ②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°, ∵AB∥CD,PB′∥QC′, ∴∠BPB′=∠BEQ=∠CQC′, 即12t﹣180=45+3t, 解得,t=25; ③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°, ∵AB∥CD,PB′∥QC′, ∴∠BPB′=∠BEQ=∠CQC′, 即12t﹣360=45+3t, 解得,t=45; 综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′. 【点睛】 本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题. 7.(1)①,②,;(2);(3) 【分析】 (1)①由“奇异数”的定义可得;②根据定义计算可得; (2)由f(10m+n)=m+n,可求k的值,即可求b; (3)根据题意可列出等式,可求出x、y的值,即可求的值. 【详解】 解:(1)①∵对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”. ∴“奇异数”为21; ②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n; (2)∵f(10m+n)=m+n,且f(b)=8 ∴k+2k-1=8 ∴k=3 ∴b=10×3+2×3-1=35; (3)根据题意有 ∵ ∴ ∴ ∵x、y为正数,且x≠y ∴x=6,y=5 ∴a=6×10+5=65 故答案为:(1)①,②,;(2);(3) 【点睛】 本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键. 8.(1);;(2);;(3). 【分析】 (1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案; (2)根据前4个等式归纳类推出一般规律即可; (3)利用题(2)的结论,先写出中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可. 【详解】 (1)观察前4个等式的分母可知,第5个式子的分母为 则第5个式子为: 故应填:;; (2)第1个等式的分母为: 第2个等式的分母为: 第3个等式的分母为: 第4个等式的分母为: 归纳类推得,第n个等式的分母为: 则第n个等式为:(n为正整数) 故应填:;; (3)由(2)的结论得: 则 . 【点睛】 本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键. 9.(1)2,3 (2)①② (3) 【分析】 (1)根据新定义的运算规则进行计算即可; (2)①根据新定义的运算规则即可求出实数的取值范围;②根据新定义的运算规则和为整数,即可求出所有非负实数的值; (3)先解方程求得,再根据方程的解是正整数解,即可求出非负实数的取值范围. 【详解】 (1)2;3; (2)①∵ ∴ 解得; ②∵ ∴ 解得 ∵为整数 ∴ 故所有非负实数的值有; (3) ∵方程的解为正整数 ∴或2 ①当时,是方程的增根,舍去 ②当时,. 【点睛】 本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键. 10.(1),;(2)①图见解析,;②见解析 【分析】 (1)根据图1得到小正方形的对角线长,即可得出数轴上点A和点B表示的数 (2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可; (3)从原点开始画一个长是2,高是1的长方形,对角线长即是a,再用圆规以这个长度画弧,交数轴于点M,再把这个长方形向左平移3个单位,用同样的方法得到点N. 【详解】 (1)由图1知,小正方形的对角线长是, ∴图2中点A表示的数是,点B表示的数是, 故答案是:,; (2)①长方形的面积是5,拼成的正方形的面积也应该是5, ∴正方形的边长是, 如图所示: 故答案是:; ②如图所示: 【点睛】 本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解. 11.(1)3;﹣3; (2)4;(3)x﹣y=7﹣. 【分析】 (1)由3<<4可得答案; (2)由2<<3知a=﹣2,由6<<7知b=6,据此求解可得; (3)由2<<3知5<3+<6,据此得出x、y的值代入计算可得. 【详解】 (1)∵3<<4, ∴的整数部分是3,小数部分是﹣3; 故答案为3;﹣3. (2)∵2<<3, ∴a=﹣2, ∵6<<7, ∴b=6, ∴a+b﹣=﹣2+6﹣=4. (3)∵2<<3, ∴5<3+<6, ∴3+的整数部分为x=5,小数部分为y=3+﹣5=﹣2. 则x﹣y=5﹣(﹣2)=5﹣+2=7﹣. 【点睛】 本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小. 12.(1)2,3 (2)①② (3) 【分析】 (1)根据新定义的运算规则进行计算即可; (2)①根据新定义的运算规则即可求出实数的取值范围;②根据新定义的运算规则和为整数,即可求出所有非负实数的值; (3)先解方程求得,再根据方程的解是正整数解,即可求出非负实数的取值范围. 【详解】 (1)2;3; (2)①∵ ∴ 解得; ②∵ ∴ 解得 ∵为整数 ∴ 故所有非负实数的值有; (3) ∵方程的解为正整数 ∴或2 ①当时,是方程的增根,舍去 ②当时,. 【点睛】 本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键. 13.(1);(2);(3)不变,值为2. 【分析】 (1)根据,即可得出a,b的值,再根据平移的性质得出,因为点C在y轴负半轴,即可得出点C的坐标; (2)过点D分别作DM⊥x轴于点M, DN⊥y轴于点N,连接OD,在中用等面积法即可求出m和n的关系式; (3)分别过点E,F作EP∥OA, FQ∥OA分别交y轴于点P,点Q,根据平行线的性质,得出 进而得到的值. 【详解】 (1)解:∵, ∴ ∴ ∵且C在y轴负半轴上, ∴, 故填:; (2)如图1,过点D分别作DM⊥x轴于点M, DN⊥y轴于点N,连接OD. ∵AB⊥ x轴于点B,且点A,D,C三点的坐标分别为: ∴, ∴, 又∵S△BOC = S△BOD+S△COD =OB×MD+OC×ND , ∴; (3)解:的值不变,值为2.理由如下: 如图所示,分别过点E,F作EP∥OA, FQ∥OA分别交y轴于点P,点Q, ∵线段OC是由线段AB平移得到, ∴BC∥OA, 又∵EP∥OA, ∴EP∥BC, ∴∠GCF=∠PEC, ∵EP∥OA, ∴∠AOE=∠OEP, ∴∠OEC=∠OEP+∠PEC=∠AOE+∠GCF, 同理:∠OFC=∠AOF+∠GCF, 又∵∠AOB=∠BOG, ∴∠OFC=2∠AOE+∠GCF, ∴ . 【点睛】 本题主要考查了非负数的性质,坐标与图形,平行线的判定与性质,以及平移的性质,解决问题的关键是作辅助线,运用等面积法,角的和差关系以及平行线的性质进行求解. 14.(1) ;(2)的值为40°;(3). 【分析】 (1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解; (2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,进而求解; (3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得 即可得关于n的方程,计算可求解n值. 【详解】 证明:过点O作OG∥AB, ∵AB∥CD, ∴AB∥OG∥CD, ∴ ∴ 即 ∵∠EOF=100°, ∴∠; (2)解:过点M作MK∥AB,过点N作NH∥CD, ∵EM平分∠BEO,FN平分∠CFO, 设 ∵ ∴ ∴x-y=40°, ∵MK∥AB,NH∥CD,AB∥CD, ∴AB∥MK∥NH∥CD, ∴ ∴ =x-y =40°, 的值为40°; (3)如图,设直线FK与EG交于点H,FK与AB交于点K, ∵AB∥CD, ∴ ∵ ∴ ∵ ∴ 即 ∵FK在∠DFO内, ∴ , ∵ ∴ ∴ 即 ∴ 解得 . 经检验,符合题意, 故答案为:. 【点睛】 本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 15.(1)A(0,5),B(4,0);(2)①E(0,﹣);②﹣2或6;(3)24. 【分析】 (1)根据二次根式和偶次幂的非负性得出a,b解答即可; (2)①根据三角形的面积公式得出点C的坐标,根据平行线的性质解答即可;②延长CA交直线l于点H(a,10),过点H作HM⊥x轴于点M,根据三角形面积公式解答即可; (3)平移GH到DM,连接HM,根据三角形面积公式解答即可. 【详解】 解:(1)∵,且,(b﹣4)2≥0, ∴a﹣5=0,b﹣4=0, 解得:a=5,b=4, ∴A(0,5),B(4,0); (2)①连接BE,如图1, ∵, ∴BC=6, ∴C(﹣2,0), ∵AB∥CE, ∴S△ABC=S△ABE, ∴, ∴AE=, ∴OE=, ∴E(0,﹣); ②∵F(m,10), ∴点F在过点G(0,10)且平行于x轴的直线l上, 延长CA交直线l于点H(a,10),过点H作HM⊥x轴于点M,则M(a,0),如图2, ∵S△HCM=S△ACO+S梯形AOMH, ∴, 解得:a=2, ∴H(2,10), ∵S△AFC=S△CFH﹣S△AFH, ∴, ∴FH=4, ∵H(2,10), ∴F(﹣2,10)或(6,10), ∴m=﹣2或6; (3)平移GH到DM,连接HM,则GD∥HM,GD=HM,如图3, 四边形BDHG的面积=△BHM的面积, 当BH⊥HM时,△BHM的面积最大,其最大值=. 【点睛】 本题主要考查图形与坐标及平移的性质,熟练掌握图形与坐标及平移的性质是解题的关键. 16.(1)是;(2)k的最小值为﹣,最大值为 【分析】 (1)分别解出两个方程,得到x﹣y的值,即可确定两个方程是“友好方程”; (2)分别解两个方程为x=1,,再由已知可得﹣1≤≤1,求出k的取值范围为即可求解. 【详解】 解:(1)由2x﹣9=5x﹣2,解得x=, 由5(y﹣1)﹣2(1﹣y)=﹣34﹣2y,解得y=﹣3, ∴x﹣y=, ∴﹣1≤x﹣y≤1, ∴方程2x﹣9=5x﹣2与方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是“友好方程”; (2)由3x﹣3+4(x﹣1)=0,解得x=1, 由,解得, ∵两个方程是“友好方程”, ∴﹣1≤x﹣y≤1, ∴﹣1≤≤1, ∴ ∴k的最小值为﹣,最大值为. 【点睛】 本题主要考查了解一元一次方程和解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解. 17.(1);(2);(3)存在点,其坐标为或. 【分析】 (1)利用平移得性质确定出平移得单位和方向; (2)根据平移得性质,设出平移单位,根据S△BCD=7(S△BCD建立方程求解,即可); (3)设出点P的坐标,表示出PC用,建立方程求解即可. 【详解】 (1)∵B(3,0)平移后的对应点, ∴设, ∴ 即线段向左平移5个单位,再向上平移4个单位得到线段 ∴点平移后的对应点; (2)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年 级数 下册 期末 压轴 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文