人教版七年级数学下册期末解答题压轴题试卷附答案.doc
《人教版七年级数学下册期末解答题压轴题试卷附答案.doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册期末解答题压轴题试卷附答案.doc(36页珍藏版)》请在咨信网上搜索。
人教版七年级数学下册期末解答题压轴题试卷附答案 一、解答题 1.(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______; (2)若一个圆的面积与一个正方形的面积都是,设圆的周长为.正方形的周长为,则______(填“”,或“”,或“”) (3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由? 2.如图,用两个面积为的小正方形纸片剪拼成一个大的正方形. (1)大正方形的边长是________; (2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由. 3.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线将它剪开后,重新拼成一个大正方形. (1)基础巩固:拼成的大正方形的面积为______,边长为______; (2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合.以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数是______; (3)变式拓展: ①如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图; ②请你利用①中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数. 4.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件. (1)求正方形工料的边长; (2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,) 5.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上. (1)请求出图中阴影部分(正方形)的面积和边长 (2)若边长的整数部分为,小数部分为,求的值. 二、解答题 6.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB. (1)如图1,若∠OPQ=82°,求∠OPA的度数; (2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数; (3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由. 7.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点. (1)若时,则___________; (2)试求出的度数(用含的代数式表示); (3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示) 8.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间. (1)求证:∠CAB=∠MCA+∠PBA; (2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE; (3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数. 9.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视.若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足.假定这一带水域两岸河堤是平行的,即,且. (1)求、的值; (2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数; (3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行? 10.已知AB∥CD,线段EF分别与AB,CD相交于点E,F. (1)请在横线上填上合适的内容,完成下面的解答: 如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数; 解:过点P作直线PH∥AB, 所以∠A=∠APH,依据是 ; 因为AB∥CD,PH∥AB, 所以PH∥CD,依据是 ; 所以∠C=( ), 所以∠APC=( )+( )=∠A+∠C=97°. (2)当点P,Q在线段EF上移动时(不包括E,F两点): ①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由; ②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系. 三、解答题 11.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且. (1)将直角如图1位置摆放,如果,则________; (2)将直角如图2位置摆放,N为上一点,,请写出与之间的等量关系,并说明理由; (3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论. 12.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由. (2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角) (3)如图3,直线上有两点A、C,分别引两条射线、.,,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t. 13.已知,将一副三角板中的两块直角三角板如图1放置,,,,. (1)若三角板如图1摆放时,则______,______. (2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数; (3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数. 14.如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且 (1)求的度数. (2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P运动到使时,求的度数. 15.如图1,D是△ABC延长线上的一点,CEAB. (1)求证:∠ACD=∠A+∠B; (2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度数. (3)如图3,AHBD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QMGR,猜想∠MQN与∠ACB的关系,说明理由. 四、解答题 16.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2. 解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 . 拓展延伸: (1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为 . (2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 . 17.如图,在中,与的角平分线交于点. (1)若,则 ; (2)若,则 ; (3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则 . 18.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC. (1)求证:∠BED=90°; (2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小; (3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: . 19.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°. (1)若DE//AB,则∠EAC= ; (2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F. ①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长; ②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由. 20.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系? (特殊化) (1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数; (2)当∠1=70°,求∠EPB的度数; (一般化) (3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示). 【参考答案】 一、解答题 1.(1);(2)<;(3)不能,理由见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的 解析:(1);(2)<;(3)不能,理由见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可; (3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】 解:(1)∵小正方形的边长为1cm, ∴小正方形的面积为1cm2, ∴两个小正方形的面积之和为2cm2, 即所拼成的大正方形的面积为2 cm2, 设大正方形的边长为xcm, ∴ , ∴ ∴大正方形的边长为cm; (2)设圆的半径为r, ∴由题意得, ∴, ∴, 设正方形的边长为a ∵, ∴, ∴, ∴ 故答案为:<; (3)解:不能裁剪出,理由如下: ∵正方形的面积为900cm2, ∴正方形的边长为30cm ∵长方形纸片的长和宽之比为, ∴设长方形纸片的长为,宽为, 则, 整理得:, ∴, ∴, ∴, ∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】 本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查. 2.(1)4;(2)不能,理由见解析. 【分析】 (1)根据已知正方形的面积求出大正方形的边长即可; (2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再 解析:(1)4;(2)不能,理由见解析. 【分析】 (1)根据已知正方形的面积求出大正方形的边长即可; (2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可. 【详解】 解:(1)两个正方形面积之和为:2×8=16(cm2), ∴拼成的大正方形的面积=16(cm2), ∴大正方形的边长是4cm; 故答案为:4; (2)设长方形纸片的长为2xcm,宽为xcm, 则2x•x=14, 解得:, 2x=2>4, ∴不存在长宽之比为且面积为的长方形纸片. 【点睛】 本题考查了算术平方根,能够根据题意列出算式是解此题的关键. 3.(1)10,;(2);(3)见解析;(4)见解析 【分析】 (1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长; (2)根据大正方形的边长结合实 解析:(1)10,;(2);(3)见解析;(4)见解析 【分析】 (1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长; (2)根据大正方形的边长结合实数与数轴的关系可得结果; (3)以2×3的长方形的对角线为边长即可画出图形; (4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形. 【详解】 解:(1)∵图1中有10个小正方形, ∴面积为10,边长AD为; (2)∵BC=,点B表示的数为-1, ∴BE=, ∴点E表示的数为; (3)①如图所示: ②∵正方形面积为13, ∴边长为, 如图,点E表示面积为13的正方形边长. 【点睛】 本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键. 4.(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:( 解析:(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:(1)正方形工料的边长为分米; (2)设长方形的长为4a分米,则宽为3a分米. 则, 解得:, 长为,宽为 ∴满足要求. 【点睛】 本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题. 5.(1)S=13,边长为 ;(2)6 【详解】 分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案. 解析:(1)S=13,边长为 ;(2)6 【详解】 分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案. 详解:解:(1)S=25-12=13, 边长为 , (2)a=3,b= -3 原式=9+-3-=6. 点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长. 二、解答题 6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ 【分析】 (1)根据∠OPA=∠QPB.可求出∠OPA的度数; (2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解 解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ 【分析】 (1)根据∠OPA=∠QPB.可求出∠OPA的度数; (2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题; (3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ. 【详解】 解:(1)∵∠OPA=∠QPB,∠OPQ=82°, ∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°, (2)作PC∥m, ∵m∥n, ∴m∥PC∥n, ∴∠AOP=∠OPC=43°, ∠BQP=∠QPC=49°, ∴∠OPQ=∠OPC+∠QPC=43°+49°=92°, ∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°, (3)∠OPQ=∠ORQ. 理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC, ∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角, ∴∠AOP=∠DOR,∠BQP=∠RQC, ∴∠OPQ=∠ORQ. 【点睛】 本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的. 7.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n° 【分析】 (1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数; (2)同(1)中方法求解 解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n° 【分析】 (1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数; (2)同(1)中方法求解即可; (3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可. 【详解】 解:(1)当n=20时,∠ABC=40°, 过E作EF∥AB,则EF∥CD, ∴∠BEF=∠ABE,∠DEF=∠CDE, ∵BE平分∠ABC,DE平分∠ADC, ∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°, ∴∠BED=∠BEF+∠DEF=60°; (2)同(1)可知: ∠BEF=∠ABE=n°,∠DEF=∠CDE=40°, ∴∠BED=∠BEF+∠DEF=n°+40°; (3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°; 当点B在点A右侧时, 如图所示,过点E作EF∥AB, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°, ∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°, ∵AB∥CD∥EF, ∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°, ∴∠BED=∠BEF-∠DEF=n°-40°; 如图所示,过点E作EF∥AB, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°, ∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°, ∵AB∥CD∥EF, ∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°, ∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°; 如图所示,过点E作EF∥AB, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°, ∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°, ∵AB∥CD∥EF, ∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°, ∴∠BED=∠BEF-∠DEF=n°-40°; 综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°. 【点睛】 此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键. 8.(1)证明见解析;(2)证明见解析;(3)120°. 【分析】 (1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解; (2) 解析:(1)证明见解析;(2)证明见解析;(3)120°. 【分析】 (1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解; (2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解; (3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解. 【详解】 解:(1)证明:如图1,过点A作AD∥MN, ∵MN∥PQ,AD∥MN, ∴AD∥MN∥PQ, ∴∠MCA=∠DAC,∠PBA=∠DAB, ∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA, 即:∠CAB=∠MCA+∠PBA; (2)如图2,∵CD∥AB, ∴∠CAB+∠ACD=180°, ∵∠ECM+∠ECN=180°, ∵∠ECN=∠CAB ∴∠ECM=∠ACD, 即∠MCA+∠ACE=∠DCE+∠ACE, ∴∠MCA=∠DCE; (3)∵AF∥CG, ∴∠GCA+∠FAC=180°, ∵∠CAB=60° 即∠GCA+∠CAB+∠FAB=180°, ∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA, 由(1)可知,∠CAB=∠MCA+∠ABP, ∵BF平分∠ABP,CG平分∠ACN, ∴∠ACN=2∠GCA,∠ABP=2∠ABF, 又∵∠MCA=180°﹣∠ACN, ∴∠CAB=180°﹣2∠GCA+2∠ABF=60°, ∴∠GCA﹣∠ABF=60°, ∵∠AFB+∠ABF+∠FAB=180°, ∴∠AFB=180°﹣∠FAB﹣∠FBA =180°﹣(120°﹣∠GCA)﹣∠ABF =180°﹣120°+∠GCA﹣∠ABF =120°. 【点睛】 本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键. 9.(1),;(2)30°;(3)15秒或82.5秒 【分析】 (1)解出式子即可; (2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数; (3)根据灯B的 解析:(1),;(2)30°;(3)15秒或82.5秒 【分析】 (1)解出式子即可; (2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数; (3)根据灯B的要求,t<150,在这个时间段内A可以转3次,分情况讨论. 【详解】 解:(1). 又,. ,; (2)设灯转动时间为秒, 如图,作,而 ,, , , , , (3)设灯转动秒,两灯的光束互相平行. 依题意得 ①当时, 两河岸平行,所以 两光线平行,所以 所以, 即:, 解得; ②当时, 两光束平行,所以 两河岸平行,所以 所以,, 解得; ③当时,图大概如①所示 , 解得(不合题意) 综上所述,当秒或82.5秒时,两灯的光束互相平行. 【点睛】 这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键. 10.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°. 解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°. 【分析】 (1)根据平行线的判定与性质即可完成填空; (2)结合(1)的辅助线方法即可完成证明; (3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系. 【详解】 解:过点P作直线PH∥AB, 所以∠A=∠APH,依据是两直线平行,内错角相等; 因为AB∥CD,PH∥AB, 所以PH∥CD,依据是平行于同一条直线的两条直线平行; 所以∠C=(∠CPH), 所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°. 故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH; (2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下: 过点P作直线PH∥AB,QG∥AB, ∵AB∥CD, ∴AB∥CD∥PH∥QG, ∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°, ∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°. ∴∠APQ+∠PQC=∠A+∠C+180°成立; ②如图3, 过点P作直线PH∥AB,QG∥AB,MN∥AB, ∵AB∥CD, ∴AB∥CD∥PH∥QG∥MN, ∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN, ∴∠PMQ=∠HPM+∠GQM, ∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°, ∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ), ∴3∠PMQ+∠A+∠C=360°. 【点睛】 考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键. 三、解答题 11.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析 【分析】 (1)作CP//a,则CP//a//b,根据平行线的性质求解. (2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N 解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析 【分析】 (1)作CP//a,则CP//a//b,根据平行线的性质求解. (2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°. (3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解. 【详解】 解:(1)如图,作CP//a, ∵a//b,CP//a, ∴CP//a//b, ∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°, ∴∠BCP=180°-∠CEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+180°-∠CEF=90°, ∴∠CEF=180°-90°+∠AOG=146°. (2)∠AOG+∠NEF=90°.理由如下: 如图,作CP//a,则CP//a//b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, ∵∠NEF+∠CEF=180°, ∴∠BCP=∠NEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+∠NEF=90°. (3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF, ∵∠GOC=∠GOP+∠POQ=135°, ∴∠GOP=135°-∠POQ, ∴∠OPQ=135°-∠POQ+∠PQF. 如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∵∠OPN=∠OPQ+∠QPN, ∴∠GOP=∠OPQ+∠PQF, ∴135°-∠POQ=∠OPQ+∠PQF. 【点睛】 本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解. 12.(1)平行,理由见解析;(2)65°;(3)5秒或95秒 【分析】 (1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b; (2)根据入射光线与镜面的夹角与反 解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒 【分析】 (1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b; (2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解; (3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解. 【详解】 解:(1)平行.理由如下: 如图1,∵∠3=∠4, ∴∠5=∠6, ∵∠1=∠2, ∴∠1+∠5=∠2+∠6, ∴a∥b(内错角相等,两直线平行); (2)如图2: ∵入射光线与镜面的夹角与反射光线与镜面的夹角相等, ∴∠1=∠2, ∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底, ∴∠1+∠2=180°-40°-90°=50°, ∴∠1=×50°=25°, ∴MN与水平线的夹角为:25°+40°=65°, 即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底; (3)存在. 如图①,AB与CD在EF的两侧时, ∵∠BAF=105°,∠DCF=65°, ∴∠ACD=180°-65°-3t°=115°-3t°, ∠BAC=105°-t°, 要使AB∥CD, 则∠ACD=∠BAC, 即115-3t=105-t, 解得t=5; 如图②,CD旋转到与AB都在EF的右侧时, ∵∠BAF=105°,∠DCF=65°, ∴∠DCF=360°-3t°-65°=295°-3t°, ∠BAC=105°-t°, 要使AB∥CD, 则∠DCF=∠BAC, 即295-3t=105-t, 解得t=95; 如图③,CD旋转到与AB都在EF的左侧时, ∵∠BAF=105°,∠DCF=65°, ∴∠DCF=3t°-(180°-65°+180°)=3t°-295°, ∠BAC=t°-105°, 要使AB∥CD, 则∠DCF=∠BAC, 即3t-295=t-105, 解得t=95, 此时t>105, ∴此情况不存在. 综上所述,t为5秒或95秒时,CD与AB平行. 【点睛】 本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论. 13.(1)15°;150°;(2)67.5°;(3)30°或90°或120° 【分析】 (1)根据平行线的性质和三角板的角的度数解答即可; (2)根据平行线的性质和角平分线的定义解答即可; (3)分当B 解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120° 【分析】 (1)根据平行线的性质和三角板的角的度数解答即可; (2)根据平行线的性质和角平分线的定义解答即可; (3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可. 【详解】 解:(1)作EI∥PQ,如图, ∵PQ∥MN, 则PQ∥EI∥MN, ∴∠α=∠DEI,∠IEA=∠BAC, ∴∠DEA=∠α+∠BAC, ∴α= DEA -∠BAC=60°-45°=15°, ∵E、C、A三点共线, ∴∠β=180°-∠DFE=180°-30°=150°; 故答案为:15°;150°; (2)∵PQ∥MN, ∴∠GEF=∠CAB=45°, ∴∠FGQ=45°+30°=75°, ∵GH,FH分别平分∠FGQ和∠GFA, ∴∠FGH=37.5°,∠GFH=75°, ∴∠FHG=180°-37.5°-75°=67.5°; (3)当BC∥DE时,如图1, ∵∠D=∠C=90, ∴AC∥DF, ∴∠CAE=∠DFE=30°, ∴∠BAM+∠BAC=∠MAE+∠CAE, ∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°; 当BC∥EF时,如图2, 此时∠BAE=∠ABC=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°; 当BC∥DF时,如图3, 此时,AC∥DE,∠CAN=∠DEG=15°, ∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°. 综上所述,∠BAM的度数为30°或90°或120°. 【点睛】 本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 14.(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解 解析:(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解; (3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案. 【详解】 (1)∵BC,BD分别评分和, ∴, ∴ 又∵, ∴ ∵, ∴ ∴; (2)∵, ∴, 又∵BD平分 ∴, ∴; ∴与之间的数量关系保持不变; (3)∵, ∴ 又∵, ∴, ∵ ∴ 由(1)可得, ∴. 【点睛】 本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解. 15.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析. 【分析】 (1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案; (2)首先根据角 解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析. 【分析】 (1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案; (2)首先根据角平分线的定义得出∠FCD=∠ECD,∠HAF=∠HAD,进而得出∠F=(∠HAD+∠ECD),然后根据平行线的性质得出∠HAD+∠ECD的度数,进而可得出答案; (3)根据平行线的性质及角平分线的定义得出,, ,再通过等量代换即可得出∠MQN=∠ACB. 【详解】 解:(1)∵CEAB, ∴∠ACE=∠A,∠ECD=∠B, ∵∠ACD=∠ACE+∠ECD, ∴∠ACD=∠A+∠B; (2)∵CF平分∠ECD,FA平分∠HAD, ∴∠FCD=∠ECD,∠HAF=∠HAD, ∴∠F=∠HAD+∠ECD=(∠HAD+∠ECD), ∵CHAB, ∴∠ECD=∠B, ∵AHBC, ∴∠B+∠HAB=180°, ∵∠BAD=70°, , ∴∠F=(∠B+∠HAD)=55°; (3)∠MQN=∠ACB,理由如下: 平分, . 平分, . , . ∴∠MQN=∠MQG﹣∠NQG =180°﹣∠QGR﹣∠NQG- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 期末 解答 压轴 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文