厦门市七年级数学下册期末压轴题考试题及答案.doc
《厦门市七年级数学下册期末压轴题考试题及答案.doc》由会员分享,可在线阅读,更多相关《厦门市七年级数学下册期末压轴题考试题及答案.doc(49页珍藏版)》请在咨信网上搜索。
1、一、解答题1如图,在平面直角坐标系中,点的坐标分别是,现同时将点分别向上平移2个单位长度,再向右平移2个单位长度,得到的对应点.连接.(1)写出点的坐标并求出四边形的面积.(2)在轴上是否存在一点,使得的面积是面积的2倍?若存在,请求出点的坐标;若不存在,请说明理由.(3)若点是直线上一个动点,连接,当点在直线上运动时,请直接写出与的数量关系. 2如图,已知直线射线CD,P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP作,交直线AB于点F,CG平分(1)若点P,F,G都在点E的右侧,求的度数;(2)若点P,F,G都在点E的右侧,求的度数;(3)在点P的运动过程中,是否存在这样的
2、情形,使?若存在,求出的度数;若不存在,请说明理由3如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接写出BAC的度数和此时AD与AC之间的位置关系4已知:如图(1)直线AB、CD被直线MN所截,12(1)求证:AB/CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连
3、接PE、EQ,PF平分BPE,QF平分EQD,则PEQ和PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH/EQ交CD于点H,连接PQ,若PQ平分EPH,QPF:EQF1:5,求PHQ的度数5如图,将一张长方形纸片沿对折,使落在的位置;(1)若的度数为,试求的度数(用含的代数式表示);(2)如图,再将纸片沿对折,使得落在的位置若,的度数为,试求的度数(用含的代数式表示);若,的度数比的度数大,试计算的度数6已知:直线ABCD,直线MN分别交AB、CD于点E、F,作射线EG平分BEF交CD于G,过点F作FHMN交EG于H(1)当点H在线段EG上时,如图
4、1当BEG时,则HFG 猜想并证明:BEG与HFG之间的数量关系(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:BEG与HFG之间的数量关系7规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(3,27)=_,(5,1)=_,(2, )=_(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4)请你尝试运用上述这种方法说明下面这个等式成立
5、的理由:(4,5)+(4,6)=(4,30)8(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222,(3)(3)(3)(3)等类比有理数的乘方,我们把222记作2,读作“2的圈3次方”,(3)(3)(3)(3)记作(3),读作“3的圈4次方”,一般地,把n个a(a0)记作a,读作“a的圈n次方”(初步探究)(1)直接写出计算结果:2 ,() ;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式(3) ;5 ;() (2)想一想:将一
6、个非零有理数a的圈n次方写成乘方的形式等于 ;9小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减”如:,反之,这个式子仍然成立,即:.(1)问题发现观察下列等式:,猜想并写出第个式子的结果: (直接写出结果,不说明理由)(2)类比探究将(1)中的的三个等式左右两边分别相加得:,类比该问题的做法,请直接写出下列各式的结果: ; ;(3)拓展延伸计算:10观察下列两个等式:,给出定义如下:我们称使等式成立的一对有理数为“白马有理数对”,记为,如:数对都是“白马有理数对”(1)数对中是“白马有理数对”的是_;(2)若
7、是“白马有理数对”,求的值;(3)若是“白马有理数对”,则是“白马有理数对”吗?请说明理由(4)请再写出一对符合条件的“白马有理数对”_(注意:不能与题目中已有的“白马有理数对”重复)11阅读下面的文字,解答问题对于实数a,我们规定:用符号a表示不大于a的最大整数;用a表示a减去a所得的差例如:1,2.22,1,2.22.220.2(1)仿照以上方法计算: 5 ;(2)若1,写出所有满足题意的整数x的值: (3)已知y0是一个不大于280的非负数,且满足0我们规定:y1,y2,y3,以此类推,直到yn第一次等于1时停止计算当y0是符合条件的所有数中的最大数时,此时y0 ,n 12规定:求若千个
8、相同的有理数(均不等于)的除法运算叫做除方,如等,类比有理数的乘方,我们把记作,读作“的圈次方”,记作,读作“的圈次方”,一般地,把记作,读作“”的圈次方(初步探究)(1)直接写出计算结果:;(2)关于除方,下列说法错误的是()A任何非零数的圈次方都等于B对于任何正整数CD负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(3)试一试:,依照前面的算式,将,的运算结果直接写成幂的形式是,;(4)想一想:将一个非零有理数的圆次方写成幂的形式是:;(5)算一算:13如图1
9、,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,其中a、b满足关系式:_,_,的面积为_;如图2,石于点C,点P是线段OC上一点,连接BP,延长BP交AC于点当时,求证:BP平分;提示:三角形三个内角和等于如图3,若,点E是点A与点B之间上一点连接CE,且CB平分问与有什么数量关系?请写出它们之间的数量关系并请说明理由14如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移
10、后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间15在平面直角坐标系中,已知线段,点的坐标为,点的坐标为,如图1所示.(1)平移线段到线段,使点的对应点为,点的对应点为,若点的坐标为,求点的坐标; (2)平移线段到线段,使点在轴的正半轴上,点在第二象限内(与对应, 与对应),连接如图2所示.若表示BCD的面积),求点、的坐标; (3)在(2)的条件下,在轴上是否存在一点,使表示PCD的面积)?若存在,求出点的坐标; 若不存在,请说明理由.16我们把关于x的一个
11、一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;(2)若关于x的组合是“有缘组合”,求a的取值范围;(3)若关于x的组合是“无缘组合”;求a的取值范围17在平面直角坐标系中,已知长方形,点,.(1)如图,有一动点在第二象限的角平分线上,若,求的度数;(2)若把长方形向上平移,得到长方形.在运动过程中,求的面积与的面积之间的数量关系;若,求的面积与的面积之比. 18在平面直角
12、坐标系中,满足(1)直接写出、的值: ; ;(2)如图1,若点满足的面积等于6,求的值;(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值19某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元 (1)列方程求出两个班各有多少学生;(2)如
13、果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案20李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B
14、款瓷砖的长和宽分别为_ 米(直接写出答案).21如图,已知和的度数满足方程组,且.(1)分别求和的度数;(2)请判断与的位置关系,并说明理由;(3)求的度数22平面直角坐标系中,A(a,0),B(0,b),a,b满足,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求的值;(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,BAC的角平分线与DFG的角平分线交于点H,求G与H之间的数量关系23阅读下列文字,请仔细体会其中的数学思想(1)解方程组,我们利用加减消元法,很快可以求得此
15、方程组的解为 ;(2)如何解方程组呢?我们可以把m+5,n+3看成一个整体,设m+5x,n+3y,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题:若关于m,n的方程组与有相同的解,求a、b的值24如果3个数位相同的自然数m,n,k满足:m+nk,且k各数位上的数字全部相同,则称数m和数n是一对“黄金搭档数”例如:因为25,63,88都是两位数,且25+6388,则25和63是一对“黄金搭档数”再如:因为152,514,666都是三位数,且152+514666,则152和514是一对“黄金搭档数”(1)分别判断87和12,62和49是否是一对“黄金搭档数”,并说明理由;(2)已知两位
16、数s和两位数t的十位数字相同,若s和t是一对“黄金搭档数”,并且s与t的和能被7整除,求出满足题意的s25学校组织名同学和名教师参加校外学习交流活动现打算选租大、小两种客车,大客车载客量为人/辆,小客车载客量为人/辆(1)学校准备租用辆客车,有几种租车方案?(2)在(1)的条件下,若大客车租金为元/辆,小客车租金为元/辆,哪种租车方案最省钱?(3)学校临时增加名学生和名教师参加活动,每辆大客车有2名教师带队,每辆小客车至少有名教师带队.同学先坐满大客车,再依次坐满小客车,最后一辆小客车至少要有人,请你帮助设计租车方案26如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上
17、的一个动点,动点Q以每秒1厘米的速度从A出发沿运动,最终到达点D,若点Q运动时间为秒(1)当时, 平方厘米;当时, 平方厘米;(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求的取值范围;(3)若的面积为平方厘米,直接写出值27阅读材料:形如的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得,然后同时除以2,得解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式;(3)已知,求的整数值28对于实数x,若,则符合条件的中最大的正数为的内数
18、,例如:8的内数是5;7的内数是4(1)1的内数是_,20的内数是_,6的内数是_;(2)若3是x的内数,求x的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为,例如当时,如图2;当时,如图2,;用表示的内数;当的内数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标(若有多点并列最远,全部写出)29在平面直角坐标系xOy中,已知点M(a,b)如果存在点N(a,b),满足a|ab|,b|ab|,则称点N为
19、点M的“控变点”(1)点A(1,2)的“控变点”B的坐标为 ;(2)已知点C(m,1)的“控变点”D的坐标为(4,n),求m,n的值;(3)长方形EFGH的顶点坐标分别为(1,1),(5,1),(5,4),(1,4)如果点P(x,2x)的“控变点”Q在长方形EFGH的内部,直接写出x的取值范围30如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作轴于B,(1)求a,b的值;(2)在y轴上是否存在点P,使得ABC和OCP的面积相等,若存在,求出点P坐标,若不存在,试说明理由.(3)若过B作BDAC交y轴于D,且AE,DE分别平分CAB,ODB,如图2,图3, 求:CABODB
20、的度数; 求:AED的度数.【参考答案】*试卷处理标记,请不要删除一、解答题1(1)点 ,点 ;12;(2)存在,点的坐标为和;(3) OFC=FOB-FCD,见解析.【解析】【分析】(1)根据点平移的规律易得点C的坐标为(0,2),点D的坐标为(6,2);(2)设点E的坐标为(x,0),根据DEC的面积是DEB面积的2倍和三角形面积公式得到,解得x=1或x=7,然后写出点E的坐标;(3)分类讨论:当点F在线段BD上,作FMAB,根据平行线的性质由MFAB得2=FOB,由CDAB得到CDMF,则1=FCD,所以OFC=FOB+FCD;同样得到当点F在线段DB的延长线上,OFC=FCD-FOB;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 厦门市 七年 级数 下册 期末 压轴 考试题 答案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。