中考数学二次函数的综合题试题及答案.doc
《中考数学二次函数的综合题试题及答案.doc》由会员分享,可在线阅读,更多相关《中考数学二次函数的综合题试题及答案.doc(29页珍藏版)》请在咨信网上搜索。
中考数学二次函数的综合题试题及答案 一、二次函数 1.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b. (1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示); (2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式; (3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围. 【答案】(1)b=﹣2a,顶点D的坐标为(﹣,﹣);(2);(3) 2≤t<. 【解析】 【分析】 (1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标; (2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可; (3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围. 【详解】 解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0), ∴a+a+b=0,即b=-2a, ∴y=ax2+ax+b=ax2+ax-2a=a(x+)2-, ∴抛物线顶点D的坐标为(-,-); (2)∵直线y=2x+m经过点M(1,0), ∴0=2×1+m,解得m=-2, ∴y=2x-2, 则, 得ax2+(a-2)x-2a+2=0, ∴(x-1)(ax+2a-2)=0, 解得x=1或x=-2, ∴N点坐标为(-2,-6), ∵a<b,即a<-2a, ∴a<0, 如图1,设抛物线对称轴交直线于点E, ∵抛物线对称轴为, ∴E(-,-3), ∵M(1,0),N(-2,-6), 设△DMN的面积为S, ∴S=S△DEN+S△DEM=|( -2)-1|•|--(-3)|=−−a, (3)当a=-1时, 抛物线的解析式为:y=-x2-x+2=-(x+)2+, 由, -x2-x+2=-2x, 解得:x1=2,x2=-1, ∴G(-1,2), ∵点G、H关于原点对称, ∴H(1,-2), 设直线GH平移后的解析式为:y=-2x+t, -x2-x+2=-2x+t, x2-x-2+t=0, △=1-4(t-2)=0, t=, 当点H平移后落在抛物线上时,坐标为(1,0), 把(1,0)代入y=-2x+t, t=2, ∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<. 【点睛】 本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大. 2.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2. (1)求抛物线的解析式及顶点坐标; (2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由; (3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值. 【答案】(1),顶点D(2,);(2)C(,0)或(,0)或(,0);(3) 【解析】 【分析】 (1)抛物线的顶点D的横坐标是2,则x2,抛物线过A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入函数表达式,即可求解; (2)分AB=AC、AB=BC、AC=BC,三种情况求解即可; (3)由S△PAB•PH•xB,即可求解. 【详解】 (1)抛物线的顶点D的横坐标是2,则x2①,抛物线过A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入上式得:9=25a+5b﹣3②,联立①、②解得:a,b,c=﹣3,∴抛物线的解析式为:yx2x﹣3. 当x=2时,y,即顶点D的坐标为(2,); (2)A(0,﹣3),B(5,9),则AB=13,设点C坐标(m,0),分三种情况讨论: ①当AB=AC时,则:(m)2+(﹣3)2=132,解得:m=±4,即点C坐标为:(4,0)或(﹣4,0); ②当AB=BC时,则:(5﹣m)2+92=132,解得:m=5,即:点C坐标为(5,0)或(5﹣2,0); ③当AC=BC时,则:5﹣m)2+92=(m)2+(﹣3)2,解得:m=,则点C坐标为(,0). 综上所述:存在,点C的坐标为:(±4,0)或(5,0)或(,0); (3)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k,故函数的表达式为:yx﹣3,设点P坐标为(m,m2m﹣3),则点H坐标为(m,m﹣3),S△PAB•PH•xB(m2+12m)=-6m2+30m=,当m=时,S△PAB取得最大值为:. 答:△PAB的面积最大值为. 【点睛】 本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系. 3.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示. (1)求这个抛物线的解析式; (2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状; (3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式. 【答案】(1);(2)C(3,0),D(1,﹣4),△BCD是直角三角形;(3) 【解析】 试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式; (2)先解方程求出抛物线与x轴的交点,再判断出△BOC和△BED都是等腰直角三角形,从而得到结论; (3)先求出QF=1,再分两种情况,当点P在点M上方和下方,分别计算即可. 试题解析:解(1)∵,∴,,∵m,n是一元二次方程的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线的图象经过点A(m,0),B(0,n),∴,∴,∴抛物线解析式为; (2)令y=0,则,∴,,∴C(3,0),∵=,∴顶点坐标D(1,﹣4),过点D作DE⊥y轴,∵OB=OC=3,∴BE=DE=1,∴△BOC和△BED都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD是直角三角形; (3)如图,∵B(0,﹣3),C(3,0),∴直线BC解析式为y=x﹣3,∵点P的横坐标为t,PM⊥x轴,∴点M的横坐标为t,∵点P在直线BC上,点M在抛物线上,∴P(t,t﹣3),M(t,),过点Q作QF⊥PM,∴△PQF是等腰直角三角形,∵PQ=,∴QF=1. ①当点P在点M上方时,即0<t<3时,PM=t﹣3﹣()=,∴S=PM×QF==,②如图3,当点P在点M下方时,即t<0或t>3时,PM=﹣(t﹣3)=,∴S=PM×QF=()=. 综上所述,S=. 考点:二次函数综合题;分类讨论. 4.抛物线(b,c为常数)与x轴交于点和,与y轴交于点A,点E为抛物线顶点。 (Ⅰ)当时,求点A,点E的坐标; (Ⅱ)若顶点E在直线上,当点A位置最高时,求抛物线的解析式; (Ⅲ)若,当满足值最小时,求b的值。 【答案】(Ⅰ),;(Ⅱ);(Ⅲ). 【解析】 【分析】 (Ⅰ)将(-1,0),(3,0)代入抛物线的解析式求得b、c的值,确定解析式,从而求出抛物线与y轴交于点A的坐标,运用配方求出顶点E的坐标即可; (Ⅱ)先运用配方求出顶点E的坐标,再根据顶点E在直线上得出吧b与c的关系,利用二次函数的性质得出当b=1时,点A位置最高,从而确定抛物线的解析式; (Ⅲ)根据抛物线经过(-1,0)得出c=b+1,再根据(Ⅱ)中顶点E的坐标得出E点关于x轴的对称点的坐标,然后根据A、P两点坐标求出直线AP的解析式,再根据点在直线AP上,此时值最小,从而求出b的值. 【详解】 解:(Ⅰ)把点和代入函数, 有。解得 (Ⅱ)由,得 ∵点E在直线上, 当时,点A是最高点此时, (Ⅲ):抛物线经过点,有 ∴E关于x轴的对称点为 设过点A,P的直线为.把代入,得 把点代入. 得,即 解得,。 舍去. 【点睛】 本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次的解析式、最短距离,数形结合思想及待定系数法的应用是解题的关键,属于中考压轴题. 5.若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”. (1)实数1,2,3可以构成“和谐三组数”吗?请说明理由; (2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值; (3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点. ①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”; ②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围. 【答案】(1)不能,理由见解析;(2)t的值为﹣4、﹣2或2;(3)①证明见解析;②≤OP<且OP≠1. 【解析】 【分析】 (1)由和谐三组数的定义进行验证即可; (2)把M、N、R三点的坐标分别代入反比例函数解析式,可用t和k分别表示出y1、y2、y3,再由和谐三组数的定义可得到关于t的方程,可求得t的值; (3)①由直线解析式可求得x1=﹣,联立直线和抛物线解析式消去y,利用一元二次方程根与系数的关系可求得x2+x3=﹣,x2x3=,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c=0,可得c=﹣(a+b),由a>2b>3c可求得的取值范围,令m=,利用两点间距离公式可得到OP2关于m的二次函数,利用二次函数的性质可求得OP2的取值范围,从而可求得OP的取值范围. 【详解】 (1)不能,理由如下: ∵1、2、3的倒数分别为1、、, ∴+≠1,1+≠,1+≠, ∴实数1,2,3不可以构成“和谐三组数”; (2)∵M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k≠0)的图象上, ∴y1、y2、y3均不为0,且y1=,y2=,y3=, ∴=,=,=, ∵y1,y2,y3构成“和谐三组数”, ∴有以下三种情况: 当=+时,则=+,即t=t+1+t+3,解得t=﹣4; 当=+时,则=+,即t+1=t+t+3,解得t=﹣2; 当=+时,则=+,即t+3=t+t+1,解得t=2; ∴t的值为﹣4、﹣2或2; (3)①∵a、b、c均不为0, ∴x1,x2,x3都不为0, ∵直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0), ∴0=2bx1+2c,解得x1=﹣, 联立直线与抛物线解析式,消去y可得2bx+2c=ax2+3bx+3c,即ax2+bx+c=0, ∵直线与抛物线交与B(x2,y2),C(x3,y3)两点, ∴x2、x3是方程ax2+bx+c=0的两根, ∴x2+x3=﹣,x2x3=, ∴+===﹣=, ∴x1,x2,x3构成“和谐三组数”; ②∵x2=1, ∴a+b+c=0, ∴c=﹣a﹣b, ∵a>2b>3c, ∴a>2b>3(﹣a﹣b),且a>0,整理可得,解得﹣<<, ∵P(,), ∴OP2=()2+()2=()2+()2=2()2+2+1=2(+)2+, 令m=,则﹣<m<且m≠0,且OP2=2(m+)2+, ∵2>0, ∴当﹣<m<﹣时,OP2随m的增大而减小,当m=﹣时,OP2有最大临界值,当m=﹣时,OP2有最小临界值, 当﹣<m<时,OP2随m的增大而增大,当m=﹣时,OP2有最小临界值,当m=时,OP2有最大临界值, ∴≤OP2<且OP2≠1, ∵P到原点的距离为非负数, ∴≤OP<且OP≠1. 【点睛】 本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t的方程是解题的关键,在(3)①中用a、b、c分别表示出x1,x2,x3是解题的关键,在(3)②中把OP2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大. 6.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线的解析式; (2)当点P运动到什么位置时,△PAB的面积有最大值? (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. 【答案】(1)抛物线解析式为y=﹣x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6). 【解析】 【分析】(1)利用待定系数法进行求解即可得; (2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得; (3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案. 【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0), ∴设抛物线解析式为y=a(x﹣6)(x+2), 将点A(0,6)代入,得:﹣12a=6, 解得:a=﹣, 所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6; (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G, 设直线AB解析式为y=kx+b, 将点A(0,6)、B(6,0)代入,得: , 解得:, 则直线AB解析式为y=﹣x+6, 设P(t,﹣t2+2t+6)其中0<t<6, 则N(t,﹣t+6), ∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t, ∴S△PAB=S△PAN+S△PBN =PN•AG+PN•BM =PN•(AG+BM) =PN•OB =×(﹣t2+3t)×6 =﹣t2+9t =﹣(t﹣3)2+, ∴当t=3时,△PAB的面积有最大值; (3)如图2, ∵PH⊥OB于H, ∴∠DHB=∠AOB=90°, ∴DH∥AO, ∵OA=OB=6, ∴∠BDH=∠BAO=45°, ∵PE∥x轴、PD⊥x轴, ∴∠DPE=90°, 若△PDE为等腰直角三角形, 则∠EDP=45°, ∴∠EDP与∠BDH互为对顶角,即点E与点A重合, 则当y=6时,﹣x2+2x+6=6, 解得:x=0(舍)或x=4, 即点P(4,6). 【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键. 7.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处. (1)求这条抛物线的表达式; (2)求线段CD的长; (3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标. 【答案】(1)抛物线解析式为y=﹣x2+2x+;(2)线段CD的长为2;(3)M点的坐标为(0,)或(0,﹣). 【解析】 【分析】(1)利用待定系数法求抛物线解析式; (2)利用配方法得到y=﹣(x﹣2)2+,则根据二次函数的性质得到C点坐标和抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),根据旋转性质得∠PDC=90°,DP=DC=t,则P(2+t,﹣t),然后把P(2+t,﹣t)代入y=﹣x2+2x+得到关于t的方程,从而解方程可得到CD的长; (3)P点坐标为(4,),D点坐标为(2,),利用抛物线的平移规律确定E点坐标为(2,﹣2),设M(0,m),当m>0时,利用梯形面积公式得到•(m++2)•2=8当m<0时,利用梯形面积公式得到•(﹣m++2)•2=8,然后分别解方程求出m即可得到对应的M点坐标. 【详解】(1)把A(﹣1,0)和点B(0,)代入y=﹣x2+bx+c得 ,解得, ∴抛物线解析式为y=﹣x2+2x+; (2)∵y=﹣(x﹣2)2+, ∴C(2,),抛物线的对称轴为直线x=2, 如图,设CD=t,则D(2,﹣t), ∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处, ∴∠PDC=90°,DP=DC=t, ∴P(2+t,﹣t), 把P(2+t,﹣t)代入y=﹣x2+2x+得﹣(2+t)2+2(2+t)+=﹣t, 整理得t2﹣2t=0,解得t1=0(舍去),t2=2, ∴线段CD的长为2; (3)P点坐标为(4,),D点坐标为(2,), ∵抛物线平移,使其顶点C(2,)移到原点O的位置, ∴抛物线向左平移2个单位,向下平移个单位, 而P点(4,)向左平移2个单位,向下平移个单位得到点E, ∴E点坐标为(2,﹣2), 设M(0,m), 当m>0时,•(m++2)•2=8,解得m=,此时M点坐标为(0,); 当m<0时,•(﹣m++2)•2=8,解得m=﹣,此时M点坐标为(0,﹣); 综上所述,M点的坐标为(0,)或(0,﹣). 【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键. 8.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. (3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标. 【答案】(1)抛物线的解析式为y=x2﹣x+1.(2)点P的坐标为(,﹣1).(3)定点F的坐标为(2,1). 【解析】 分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式; (2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标; (3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标. 详解:(1)∵抛物线的顶点坐标为(2,0), 设抛物线的解析式为y=a(x-2)2. ∵该抛物线经过点(4,1), ∴1=4a,解得:a=, ∴抛物线的解析式为y=(x-2)2=x2-x+1. (2)联立直线AB与抛物线解析式成方程组,得: ,解得:,, ∴点A的坐标为(1,),点B的坐标为(4,1). 作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示). ∵点B(4,1),直线l为y=-1, ∴点B′的坐标为(4,-3). 设直线AB′的解析式为y=kx+b(k≠0), 将A(1,)、B′(4,-3)代入y=kx+b,得: ,解得:, ∴直线AB′的解析式为y=-x+, 当y=-1时,有-x+=-1, 解得:x=, ∴点P的坐标为(,-1). (3)∵点M到直线l的距离与点M到点F的距离总是相等, ∴(m-x0)2+(n-y0)2=(n+1)2, ∴m2-2x0m+x02-2y0n+y02=2n+1. ∵M(m,n)为抛物线上一动点, ∴n=m2-m+1, ∴m2-2x0m+x02-2y0(m2-m+1)+y02=2(m2-m+1)+1, 整理得:(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0. ∵m为任意值, ∴, ∴, ∴定点F的坐标为(2,1). 点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组. 9.我们知道,经过原点的抛物线解析式可以是。 (1)对于这样的抛物线: 当顶点坐标为(1,1)时,a= ; 当顶点坐标为(m,m),m≠0时,a 与m之间的关系式是 ; (2)继续探究,如果b≠0,且过原点的抛物线顶点在直线上,请用含k的代数式表示b; (3)现有一组过原点的抛物线,顶点A1,A2,…,An在直线上,横坐标依次为1,2,…,n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,B3,…,Bn,以线段AnBn为边向右作正方形AnBnCnDn,若这组抛物线中有一条经过点Dn,求所有满足条件的正方形边长。 【答案】(1)-1;(2)(3)3,6,9 【解析】 解:(1)-1;。 (2)∵过原点的抛物线顶点在直线上,∴。 ∵b≠0,∴。 (3)由(2)知,顶点在直线上,横坐标依次为1,2,…,n(n为正整数,且n≤12)的抛物线为:,即。 对于顶点在在直线上的一点Am(m,m)(m为正整数,且m≤n),依题意,作的正方形AmBmCmDm边长为m,点Dm坐标为(2 m,m), 若点Dm在某一抛物线上,则 ,化简,得。 ∵m,n为正整数,且m≤n≤12,∴n=4,8,12,m=3,6,9。 ∴所有满足条件的正方形边长为3,6,9。 (1)当顶点坐标为(1,1)时,由抛物线顶点坐标公式,有,即。 当顶点坐标为(m,m),m≠0时,。 (2)根据点在直线上,点的坐标满足方程的关系,将抛物线顶点坐标代入, 化简即可用含k的代数式表示b。 由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m的值和D点坐标。 (3)将依题意,作的正方形AmBmCmDm边长为m,点Dm坐标为(2 m,m),将(2 m,m)代入抛物线求出m,n的关系,即可求解。 10.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点C(0,4),交x轴正半轴于点B,连接AC,点E是线段OB上一动点(不与点O,B重合),以OE为边在x轴上方作正方形OEFG,连接FB,将线段FB绕点F逆时针旋转90°,得到线段FP,过点P作PH∥y轴,PH交抛物线于点H,设点E(a,0). (1)求抛物线的解析式. (2)若△AOC与△FEB相似,求a的值. (3)当PH=2时,求点P的坐标. 【答案】(1)y=﹣x2+3x+4;(2)a=或;(3)点P的坐标为(2,4)或(1,4)或(,4). 【解析】 【详解】 (1)点C(0,4),则c=4, 二次函数表达式为:y=﹣x2+bx+4, 将点A的坐标代入上式得:0=﹣1﹣b+4,解得:b=3, 故抛物线的表达式为:y=﹣x2+3x+4; (2)tan∠ACO==, △AOC与△FEB相似,则∠FBE=∠ACO或∠CAO, 即:tan∠FEB=或4, ∵四边形OEFG为正方形,则FE=OE=a, EB=4﹣a, 则或, 解得:a=或; (3)令y=﹣x2+3x+4=0,解得:x=4或﹣1,故点B(4,0); 分别延长CF、HP交于点N, ∵∠PFN+∠BFN=90°,∠FPN+∠PFN=90°, ∴∠FPN=∠NFB, ∵GN∥x轴,∴∠FPN=∠NFB=∠FBE, ∵∠PNF=∠BEF=90°,FP=FB, ∴△PNF≌△BEF(AAS), ∴FN=FE=a,PN=EB=4﹣a, ∴点P(2a,4),点H(2a,﹣4a2+6a+4), ∵PH=2, 即:﹣4a2+6a+4﹣4=|2|, 解得:a=1或或或(舍去), 故:点P的坐标为(2,4)或(1,4)或(,4). 【点睛】 本题考查的是二次函数综合运用,其中(2)、(3),要注意分类求解,避免遗漏. 11.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为m. (1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离; (2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过? (3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米? 【答案】(1)抛物线的函数关系式为y=x2+2x+4,拱顶D到地面OA的距离为10 m;(2)两排灯的水平距离最小是4 m. 【解析】 【详解】 试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值. 试题解析:(1)由题知点在抛物线上 所以,解得,所以 所以,当时, 答:,拱顶D到地面OA的距离为10米 (2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0)) 当x=2或x=10时,,所以可以通过 (3)令,即,可得,解得 答:两排灯的水平距离最小是 考点:二次函数的实际应用. 12.抛物线与x轴交于A,B两点(OA<OB),与y轴交于点C. (1)求点A,B,C的坐标; (2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2). ①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,的值最小,求出这个最小值并写出此时点E,P的坐标; ②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由. 【答案】(1)A(2,0),B(4,0),C(0,2);(2)①t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②F(3,2),(3,7). 【解析】 试题分析:(1)在抛物线的解析式中,令y=0,令x=0,解方程即可得到结果; (2)①由题意得:OP=2t,OE=t,通过△CDE∽△CBO得到,即,求得有最小值1,即可求得结果; ②存在,求得抛物线的对称方程为x=3,设F(3,m),当△EFP为直角三角形时,①当∠EPF=90°时,②当∠EFP=90°时,③当∠PEF=90°时,根据勾股定理列方程即可求得结果. 试题解析:(1)在抛物线的解析式中,令y=0,即,解得:,,∵OA<OB,∴A(2,0),B(4,0),在抛物线的解析式中,令x=0,得y=2,∴C(0,2); (2)①由题意得:OP=2t,OE=t,∵DE∥OB,∴△CDE∽△CBO,∴,即,∴DE=4﹣2t, ∴===,∵0<t<2,始终为正数,且t=1时,有最大值1,∴t=1时,有最小值1,即t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0); ②存在,∵抛物线的对称轴方程为x=3,设F(3,m),∴,=,=, 当△EFP为直角三角形时, ①当∠EPF=90°时,,即,解得:m=2, ②当∠EFP=90°时,,即,解得;m=0或m=1,不合题意舍去,∴当∠EFP=90°时,这种情况不存在, ③当∠PEF=90°时,,即,解得:m=7, 综上所述,F(3,2),(3,7). 考点:1.二次函数综合题;2.动点型;3.最值问题;4.二次函数的最值;5.分类讨论;6.压轴题. 13.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M. (1)求该抛物线所表示的二次函数的表达式; (2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形? (3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由. 【答案】(1)y=﹣x2+x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似. 【解析】 分析:(1)待定系数法求解可得; (2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得; (3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再证△MBQ∽△BPQ得,即,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标. 详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4), 将点C(0,2)代入,得:-4a=2, 解得:a=-, 则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2; (2)由题意知点D坐标为(0,-2), 设直线BD解析式为y=kx+b, 将B(4,0)、D(0,-2)代入,得: ,解得:, ∴直线BD解析式为y=x-2, ∵QM⊥x轴,P(m,0), ∴Q(m,--m2+m+2)、M(m,m-2), 则QM=-m2+m+2-(m-2)=-m2+m+4, ∵F(0,)、D(0,-2), ∴DF=, ∵QM∥DF, ∴当-m2+m+4=时,四边形DMQF是平行四边形, 解得:m=-1(舍)或m=3, 即m=3时,四边形DMQF是平行四边形; (3)如图所示: ∵QM∥DF, ∴∠ODB=∠QMB, 分以下两种情况: ①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ, 则, ∵∠MBQ=90°, ∴∠MBP+∠PBQ=90°, ∵∠MPB=∠BPQ=90°, ∴∠MBP+∠BMP=90°, ∴∠BMP=∠PBQ, ∴△MBQ∽△BPQ, ∴,即, 解得:m1=3、m2=4, 当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去, ∴m=3,点Q的坐标为(3,2); ②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′, 此时m=-1,点Q的坐标为(-1,0); 综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似. 点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用. 14.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点. (1)求A、B两点的坐标; (2)求抛物线的解析式; (3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值. 【答案】(1)(﹣1,0)(2)y=﹣x2+x+(3) 【解析】 试题分析:(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标; (2)由A、B两点坐标,利用待定系数法可求得抛物线解析式; (3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值. 试题解析: (1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点, ∴B(3,0),C(0,), ∴OB=3,OC=, ∴tan∠BCO==, ∴∠BCO=60°, ∵∠ACB=90°, ∴∠ACO=30°, ∴=tan30°=,即=,解得AO=1, ∴A(﹣1,0); (2)∵抛物线y=ax2+bx+经过A,B两点, ∴,解得, ∴抛物线解析式为y=﹣x2+x+; (3)∵MD∥y轴,MH⊥BC, ∴∠MDH=∠BCO=60°,则∠DMH=30°, ∴DH=DM,MH=DM, ∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM, ∴当DM有最大值时,其周长有最大值, ∵点M是直线BC上方抛物线上的一点, ∴可设M(t,﹣t2+t+),则D(t,﹣t+), ∴DM=﹣t2+t+),则D(t,﹣t+), ∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 二次 函数 综合 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文