九年级上册压轴题考试试卷含详细答案.doc
《九年级上册压轴题考试试卷含详细答案.doc》由会员分享,可在线阅读,更多相关《九年级上册压轴题考试试卷含详细答案.doc(56页珍藏版)》请在咨信网上搜索。
九年级上册压轴题考试试卷精选含详细答案 一、压轴题 1.已知抛物线y=ax2+bx+c(a>0),顶点D在y轴上,与x轴的一个交点的横坐标为. (1)求a、c满足的关系式; (2)若直线y=kx-2a与抛物线交于A、B两点(点A在点B左侧),以AB为直径的圆恒过点D. ①求抛物线的解析式; ②设直线y=kx-2a与y轴交于点M、直线l1:y=px+q过点B,且与抛物线只有一个公共点,过点D作x轴的平行线l2,l1与l2交于点N.分别记、的面积为S1,S2,求. 2.定义:对于已知的两个函数,任取自变量的一个值,当时,它们对应的函数值相等;当时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数,它的相关函数为. (1)已知点在一次函数的相关函数的图像上,求的值; (2)已知二次函数. ①当点在这个函数的相关函数的图像上时,求的值; ②当时,求函数的相关函数的最大值和最小值. (3)在平面直角坐标系中,点、的坐标分别为、,连结.直接写出线段与二次函数的相关函数的图像有两个公共点时的取值范围. 3.已知抛物线与x轴交于点,点,与y轴交于点,顶点为点D. (1)求抛物线的解析式; (2)若过点C的直线交线段AB于点E,且,求直线CE的解析式 (3)若点P在抛物线上,点Q在x轴上,当以点D、C、P、Q为顶点的四边形是平行四边形时,求点P的坐标; (4)已知点,在抛物线对称轴上找一点F,使的值最小此时,在抛物线上是否存在一点K,使的值最小,若存在,求出点K的坐标;若不存在,请说明理由. 4.如图,抛物线经过点,顶点为,对称轴与轴相交于点,为线段的中点. (1)求抛物线的解析式; (2)为线段上任意一点,为轴上一动点,连接,以点为中心,将逆时针旋转,记点的对应点为,点的对应点为.当直线与抛物线只有一个交点时,求点的坐标. (3)在(2)的旋转变换下,若(如图). ①求证:. ②当点在(1)所求的抛物线上时,求线段的长. 5.如图,在平面直角坐标系中,抛物线与轴正半轴交于点,且点的坐标为,过点作垂直于轴的直线.是该抛物线上的任意一点,其横坐标为,过点作于点;是直线上的一点,其纵坐标为,以,为边作矩形. (1)求的值. (2)当点与点重合时,求的值. (3)当矩形是正方形,且抛物线的顶点在该正方形内部时,求的值. (4)当抛物线在矩形内的部分所对应的函数值随的增大而减小时,直接写出的取值范围. 6.已知:如图,抛物线交正半轴交于点,交轴于点,点在抛物线上,直线:过点,点是直线上的一个动点,的外心是. (1)求,的值. (2)当点移动到点时,求的面积. (3)①是否存在点,使得点落在的边上,若存在,求出点的坐标,若不存在,请说明理由. ②过点作直线轴交直线于点,当点从点移动到点时,圆心移动的路线长为_____.(直接写出答案) 7.在平面直角坐标系中,抛物线y=ax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D. (1)求抛物线的解析式; (2)点P为直线CD上的一个动点,连接BC; ①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由; ②如图2,点P在x轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标. 8.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数,且a≠0)上,L交y轴于点C,连接CP. (1)用a表示k,并求L的对称轴及L与y轴的交点坐标; (2)当L经过(3,3)时,求此时L的表达式及其顶点坐标; (3)横、纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,求a的取值范围; (4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围. 9.如图,在平面直角坐标系中,已知抛物线与直线AB相交于A,B两点,其中,. (1)求该抛物线的函数表达式; (2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求面积的最大值; (3)将该抛物线向右平移2个单位长度得到抛物线,平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由. 10.如图1,在平面直角坐标系中,抛物线与x轴交于点 A(-1,0) ,B(点A在点B的左侧),交y轴与点(0,-3),抛物线的对称轴为直线x=1,点D为抛物线的顶点. (1)求该抛物线的解析式; (2)已知经过点A的直线y=kx+b(k>0)与抛物线在第一象限交于点E,连接AD,DE,BE,当时,求点E的坐标. (3)如图2,在(2)中直线AE与y轴交于点F,将点F向下平移个单位长度得到Q,连接QB.将△OQB绕点O逆时针旋转一定的角度(0°<<360°)得到,直线与x轴交于点G.问在旋转过程中是否存在某个位置使得是等腰三角形?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由. 11.新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB的周长与面积相等,则点P是“和谐点”. (1)点M(1,2)_____“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程的解,求a,b的值. (2)如图②,点E 是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P(2,3),,求点Q的坐标; (3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段.若M是直线上的一动点,连接PM、OM,请画出图形并写出与,的数量关系. 12.如图1,抛物线的顶点在轴上,交轴于,将该抛物线向上平移,平移后的抛物线与轴交于,顶点为. (1)求点的坐标和平移后抛物线的解析式; (2)点在原抛物线上,平移后的对应点为,若,求点的坐标; (3)如图2,直线与平移后的抛物线交于.在抛物线的对称轴上是否存在点,使得以为顶点的三角形是直角三角形?若存在,直接写出点的坐标;若不存在,请说明理由. 13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. 14.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B. (1)求抛物线的函数表达式; (2)点D为直线AC上方抛物线上一动点; ①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1, △BCE的面积为S2, 求的最大值; ②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由 15.如图,正方形ABCD中,对角线AC、BD交于点O,E为OC上动点(与点O不重合),作AF⊥BE,垂足为G,交BO于H.连接OG、CG. (1)求证:AH=BE; (2)试探究:∠AGO 的度数是否为定值?请说明理由; (3)若OG⊥CG,BG=,求△OGC的面积. 16.如图,在平面直角坐标系中,函数的图象经过点A(1,4)和点B,过点A作AC⊥x轴,垂足为点C,过点B作BD⊥y轴,垂足为点D,连结AB、BC、DC、DA,点B的横坐标为a(a>1) (1)求k的值 (2)若△ABD的面积为4; ①求点B的坐标, ②在平面内存在点E,使得以点A、B、C、E为顶点的四边形是平行四边形,直接写出符合条件的所有点E的坐标. 17.如图所示,在中,,,,点从点出发沿方向以每秒2个单位长度的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长度的速度向点匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒,过点作于点,连接、. (1)求证:; (2)四边形能够成为菱形吗?若能,求出的值;若不能,请说明理由; (3)当________时,为直角三角形. 18.如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点. (1)求此抛物线的解析式和直线AB的解析式; (2)如图①,动点E从O点出发,沿着OA方 向 以1个单位/秒的速度向终点A匀速运动,同时, 动点F从A点出发,沿着AB方向以个单位/ 秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形? (3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由. 19.已知四边形是矩形. (1)如图1,分别是上的点,垂直平分,垂足为,连接. ①求证:; ②若,求的大小; (2)如图2,,分别是上的点,垂直平分,点是的中点,连接,若,直接写出的长. 20.如图1,抛物线与轴交于、两点,与轴交于点,作直线.点是线段上的一个动点(不与,重合),过点作轴于点.设点的横坐标为. (1)求抛物线的表达式及点的坐标; (2)线段的长用含的式子表示为 ; (3)以为边作矩形,使点在轴负半轴上、点在第三象限的抛物线上. ①如图2,当矩形成为正方形时,求的值; ②如图3,当点恰好是线段的中点时,连接,.试探究坐标平面内是否存在一点,使以,,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由. 【参考答案】***试卷处理标记,请不要删除 一、压轴题 1.(1);(2)①;②2. 【解析】 【分析】 (1)先根据二次函数的对称性求出抛物线与x轴的另一个交点的横坐标,然后根据二次函数与一元二次方程的联系、一元二次方程的根与系数的关系即可得; (2)①先根据(1)可得抛物线的解析式和顶点D的坐标,再设,从而可得直线AD、BD解析式中的一次项系数,然后根据一元二次方程的根与系数的关系可得,,最后根据圆周角定理可得,从而可得,化简可求出a的值,由此即可得出答案; ②先求出点B、D的坐标,再根据直线与抛物线只有一个交点可得出,然后联立直线与求出点N的坐标,最后利用三角形的面积公式分别求出,由此即可得. 【详解】 (1)抛物线,顶点D在y轴上, 抛物线的对称轴为y轴,即, , 抛物线与x轴的一个交点的横坐标为, 抛物线与x轴的另一个交点的横坐标为, 和是关于x的一元二次方程的两根, , 即; (2)①由(1)可得:抛物线的解析式为, 顶点D的坐标为, 由题意,设点A、B的坐标分别为,且, 由点A、D的坐标得:直线AD解析式中的一次项系数为, 由点B、D的坐标得:直线BD解析式中的一次项系数为, 联立可得, 则与是关于x的一元二次方程的两根, 由根与系数的关系得:, 以AB为直径的圆恒过点D, ,即, 则, 整理得:, 解得或(不符题意,舍去), 故抛物线的解析式为; ②由①可知,, 则直线的解析式为, 联立可得, 与抛物线只有一个公共点, 方程只有一个实数根, 其根的判别式,且, 解得, 将代入得:, 联立,解得, 即点N的坐标为, , ,, . 【点睛】 本题考查了二次函数与一元二次方程的联系、一元二次方程的根与系数的关系以及根的判别式、二次函数的对称性、圆周角定理等知识点,较难的是题(2)①,利用圆周角定理得出,从而利用一次函数的性质建立等式是解题关键. 2.(1)1;(2)①、 ;②,;(3), 【解析】 【分析】 (1)先求出的相关函数,然后代入求解,即可得到答案; (2)先求出二次函数的相关函数,①分为m<0和m≥0两种情况将点B的坐标代入对应的关系式求解即可; ②当-3≤x<0时,y=x2-4x+,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x2+4x-,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值,然后结合函数图象可确定出n的取值范围. 【详解】 解:(1)根据题意, 一次函数的相关函数为, ∴把点代入,则 , ∴; (2)根据题意,二次函数的相关函数为, ①当m<0时,将B(m,)代入y=x2-4x+得m2-4m+, 解得:m=2+(舍去)或m=. 当m≥0时,将B(m,)代入y=-x2+4x-得:-m2+4m-=, 解得:m=2+或m=2. 综上所述:m=或m=或m=. ②当-3≤x<0时,y=x2-4x+,抛物线的对称轴为x=2,此时y随x的增大而减小, ∴当时,有最大值,即, ∴此时y的最大值为. 当0≤x≤3时,函数y=-x2+4x,抛物线的对称轴为x=2, 当x=0有最小值,最小值为, 当x=2时,有最大值,最大值y=. 综上所述,当-3≤x≤3时,函数y=-x2+4x的相关函数的最大值为,最小值为; (3)如图1所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有1个公共点. ∴当x=2时,y=1,即-4+8+n=1,解得n=-3. 如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点. ∵抛物线y=x2-4x-n与y轴交点纵坐标为1, ∴-n=1,解得:n=-1. ∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点. 如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点. ∵抛物线y=-x2+4x+n经过点(0,1), ∴n=1. 如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点. ∵抛物线y=x2-4x-n经过点M(,1), ∴+2-n=1,解得:n=. ∴1<n≤时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点. 综上所述,n的取值范围是-3<n≤-1或1<n≤. 【点睛】 本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值是解题的关键. 3.(1);(2);(3)点P的坐标为;(4)存在,点K的坐标为 【解析】 【分析】 (1)由于点A、B为抛物线与x轴的交点,可设两点式求解;也可将A、B、C的坐标直接代入解析式中利用待定系数法求解即可; (2)根据两个三角形的高相等,则由面积比得出,求出AE,根据点A坐标可解得点E坐标,进而求得直线CE的解析式; (3)分两种情况讨论①当四边形为平行四边形时;②当四边形为平行四边形时,根据平行四边形的性质和点的坐标位置关系得出纵坐标的关系式,分别代入坐标数值,解方程即可解答; (4)根据抛物线的对称性,AF=BF,则HF+AF=HF+BF,当H、F、B共线时,HF+AF值最小,求出此时点F的坐标,设,由勾股定理和抛物线方程得,过点K作直线SK,使轴,且点的纵坐标为,则点S的坐标为,此时,,∴KF+KG=KS+KG,当S、K、G共线且平行y轴时,KF+KG值最小,由点G坐标解得,代入抛物线方程中解得,即为所求K的坐标. 【详解】 解:(1)方法1:设抛物线的解析式为 将点代入解析式中,则有. ∴抛物线的解析式为. 方法二:∵经过三点抛物线的解析式为, 将代入解析式中,则有 ,解得:, ∴抛物线的解析式为. (2), . . . . 的坐标为. 又点的坐标为. 直线的解析式为. (3). ∴顶点D的坐标为. ①当四边形为平行四边形时,由DQ∥CP,DQ=CP得: ,即. .令,则. . ∴点P的坐标为. ②当四边形为平行四边形时,由CQ∥DP,CQ=DP得: ,即 .令,则. . ∴点P的坐标为. ∴综合得:点P的坐标为 (4)∵点A或点B关于对称轴对称 ∴连接与直线交点即为F点. ∵点H的坐标为,点的坐标为, ∴直线BH的解析式为:. 令,则. 当点F的坐标为时,的值最小.11分 设抛物线上存在一点,使得的值最小. 则由勾股定理可得:. 又∵点K在抛物线上, 代入上式中, . 如图,过点K作直线SK,使轴,且点的纵坐标为. ∴点S的坐标为. 则. (两处绝对值化简或者不化简者正确.) . 当且仅当三点在一条直线上,且该直线干行于y轴,的值最小. 又∵点G的坐标为, ,将其代入抛物线解析式中可得:. ∴当点K的坐标为时,最小. 【点睛】 本题主要考查了二次函数与几何图形的综合,涉及待定系数法、平行四边形的性质、、三角形面积、求线段和的最小值(即将军饮马模型)等知识,解答的关键是认真审题,找出相关条件,运用待定系数法、数形结合法等解题方法确定解题思路,对相关信息进行推理、探究、发现和计算. 4.(1);(2)(,0);(3)①见解析;②=或= 【解析】 【分析】 (1)根据点C在抛物线上和已知对称轴的条件可求出解析式; (2)根据抛物线的解析式求出点B及已知点C的坐标,证明△ABC是等腰直角三角形,根据旋转的性质推出直线EF与x轴的夹角为45°,因此设直线EF的解析式为y=x+b,设点M的坐标为(m,0),推出点F(m,6-m),直线与抛物线只有一个交点,联立两个解析式,得到关于x的一元二次方程,根据根的判别式为0得到关于m的方程,解方程得点M的坐标.注意有两种情况,均需讨论. (3)①过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,设点M的坐标为(m,0),由及旋转的性质,证明△EHM≌△MGP,得到点E的坐标为(m-1,5-m),再根据两点距离公式证明,注意分两种情况,均需讨论;②把E(m-1,5-m)代入抛物线解析式,解出m的值,进而求出CM的长. 【详解】 (1)∵点在抛物线上, ∴, 得到, 又∵对称轴, ∴, 解得, ∴, ∴二次函数的解析式为; (2)当点M在点C的左侧时,如下图: ∵抛物线的解析式为,对称轴为, ∴点A(2,0),顶点B(2,4), ∴AB=AC=4, ∴△ABC是等腰直角三角形, ∴∠1=45°; ∵将逆时针旋转得到△MEF, ∴FM=CM,∠2=∠1=45°, 设点M的坐标为(m,0), ∴点F(m,6-m), 又∵∠2=45°, ∴直线EF与x轴的夹角为45°, ∴设直线EF的解析式为y=x+b, 把点F(m,6-m)代入得:6-m=m+b,解得:b=6-2m, 直线EF的解析式为y=x+6-2m, ∵直线与抛物线只有一个交点, ∴, 整理得:, ∴Δ=b2-4ac=0,解得m=, 点M的坐标为(,0). 当点M在点C的右侧时,如下图: 由图可知,直线EF与x轴的夹角仍是45°,因此直线与抛物线不可能只有一个交点. 综上,点M的坐标为(,0). (3)①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H, ∵,由(2)知∠BCA=45°, ∴PG=GC=1, ∴点G(5,0), 设点M的坐标为(m,0), ∵将逆时针旋转得到△MEF, ∴EM=PM, ∵∠HEM+∠EMH=∠GMP+∠EMH =90°, ∴∠HEM=∠GMP, 在△EHM和△MGP中, , ∴△EHM≌△MGP(AAS), ∴EH=MG=5-m,HM=PG=1, ∴点H(m-1,0), ∴点E的坐标为(m-1,5-m); ∴EA==, 又∵为线段的中点,B(2,4),C(6,0), ∴点D(4,2), ∴ED==, ∴EA= ED. 当点M在点C的右侧时,如下图: 同理,点E的坐标仍为(m-1,5-m),因此EA= ED. ②当点在(1)所求的抛物线上时, 把E(m-1,5-m)代入,整理得:m2-10m+13=0, 解得:m=或m=, ∴=或=. 【点睛】 本题是二次函数综合题,熟练掌握二次函数的图象和性质、旋转的性质、分类讨论的思想是解题的关键. 5.(1);(2);(3);(4)或. 【解析】 【分析】 (1)将A点坐标代入函数解析式即可求得b的值; (2)分别表示出P、Q、M的坐标,根据Q、M的横坐标相同,它们重合时纵坐标也相同,列出方程求解即可; (3)分别表示出PQ和MQ的长度,根据矩形是正方形时,即可求得m的值,再根据顶点在正方形内部,排除不符合条件的m的值; (4)分,,,四种情况讨论,结合图形分析即可. 【详解】 解:(1)将点代入 得, 解得b=1,; (2)由(1)可得函数的解析式为, ∴, ∵于点, ∴, ∵是直线上的一点,其纵坐标为, ∴, 若点与点重合,则 , 解得; (3)由(2)可得,, 当矩形是正方形时, 即, 即或, 解得, 解得, 又, ∴抛物线的顶点为(1,2), ∵抛物线的顶点在该正方形内部, ∴P点在抛物线对称轴左侧,即,且M点的纵坐标大于抛物线顶点的纵坐标,即, 解得,故m的值为; (4)①如下图 当时,若抛物线在矩形内的部分所对应的函数值随的增大而减小, 则M点的纵坐标应该小于P点纵坐标,且P点应该在x轴上侧, 即且, 解得, 解得, ∴, ②如下图 当时,若抛物线在矩形内的部分所对应的函数值随的增大而减小, 则M点的纵坐标应该小于P点纵坐标, 即,解得, ∴; ③当时,P点和M点都在直线x=3上不构成矩形,不符合题意; ④如下图 当时,若抛物线在矩形内的部分所对应的函数值随的增大而减小, 则M点的纵坐标应该大于P点纵坐标, 即,解得或, 故, 综上所述或. 【点睛】 本题考查二次函数综合,正方形的性质定理,求二次函数解析式.能分别表示出M、P、Q的坐标并结合图形分析是解决此题的关键,注意分类讨论. 6.(1);(2);(3)①点E的坐标为:或或; ②圆心P移动的路线长= 【解析】 【分析】 (1)令求出点A(6,0),把点C(-4,n)代入在抛物线方程,解得:n=5,把点B(0,-3)代入,从而可得答案; (2)记与轴的交点为,利用即可求解; (3)①分当点P落在CA上时,点P落在AE上时,点P落在CE上时三种情况讨论即可; ②分E在D和B点两种情况,求出圆心点的坐标,则圆心P移动的路线长=,即可求解. 【详解】 解:(1)令 点A(6,0), 把点C(-4,n)代入在抛物线方程, 解得: , 把点B(0,-3)代入, 解得:, 则:直线l:,…① (2)由(1)知:A(6,0)、B(0,-3)、C(-4,5)、 AC中点为 设为: 解得: 所在的直线方程为:, 如图,AC与y轴交点H坐标为:(0,3), (3)如下图: ①当点P落在CA上时, 圆心P为AC的中点 其所在的直线与AC垂直, 的垂直平分线即圆心P所在的直线方程为: 把代入得: …②, 解得: E的坐标为; 当点P落在AE上时, 设点 则点P的坐标, 则PA=PC, 解得: 故点 当点P落在CE上时, 则PC=PA, 同理可得: 故点 综上,点E的坐标为:或或; ②当E在D点时,作AD的垂直平分线交的垂直平分线于点, 则,的纵坐标为 代入②式,解得: 同理当当E在B点时, 作AB的垂直平分线交的垂直平分线于点, 的中点为:, 设为:, 解得: AB直线方程为:, 设的垂直平分线方程为: , 的垂直平分线方程为: 解得: 则圆心P移动的路线长= 故答案为: 【点评】 本题是二次函数的综合题,考查了二次函数与轴的交点坐标,利用待定系数法求解一次函数的解析式,三角形的外心的性质、一次函数的交点问题,勾股定理的应用,综合性很强,是难度较大类题目. 7.(1)y=x2+2x﹣3;(2)①存在,点P的坐标为(1,﹣2)或(﹣5,﹣8);②点M(﹣,﹣) 【解析】 【分析】 (1)y=ax2+bx﹣3=a(x+3)(x﹣1),即可求解; (2)①分点P(P′)在点C的右侧、点P在点C的左侧两种情况,分别求解即可; ②证明△AGR≌△RHM(AAS),则点M(m+n,n﹣m﹣3),利用点M在抛物线上和AR=NR,列出等式即可求解. 【详解】 解:(1)y=ax2+bx﹣3=a(x+3)(x﹣1), 解得:a=1, 故抛物线的表达式为:y=x2+2x﹣3①; (2)由抛物线的表达式知,点C、D的坐标分别为(0,﹣3)、(﹣1,﹣4), 由点C、D的坐标知,直线CD的表达式为:y=x﹣3; tan∠BCO=,则cos∠BCO=; ①当点P(P′)在点C的右侧时, ∵∠P′AB=∠BCO, 故P′B∥y轴,则点P′(1,﹣2); 当点P在点C的左侧时, 设直线PB交y轴于点H,过点H作HN⊥BC于点N, ∵∠PBC=∠BCO, ∴△BCH为等腰三角形,则 BC=2CH•cos∠BCO=2×CH×=, 解得:CH=,则OH=3﹣CH=,故点H(0,﹣), 由点B、H的坐标得,直线BH的表达式为:y=x﹣②, 联立①②并解得:, 故点P的坐标为(1,﹣2)或(﹣5,﹣8); ②∵∠PAB=∠BCO,而tan∠BCO=, 故设直线AP的表达式为:y=,将点A的坐标代入上式并解得:s=1, 故直线AP的表达式为:y=x+1, 联立①③并解得:,故点N(,); 设△AMN的外接圆为圆R, 当∠ANM=45°时,则∠ARM=90°,设圆心R的坐标为(m,n), ∵∠GRA+∠MRH=90°,∠MRH+∠RMH=90°, ∴∠RMH=∠GAR, ∵AR=MR,∠AGR=∠RHM=90°, ∴△AGR≌△RHM(AAS), ∴AG=m+3=RH,RG=﹣n=MH, ∴点M(m+n,n﹣m﹣3), 将点M的坐标代入抛物线表达式得:n﹣m﹣3=(m+n)2+2(m+n)﹣3③, 由题意得:AR=NR,即(m+3)2=(m﹣)2+()2④, 联立③④并解得:, 故点M(﹣,﹣). 【点睛】 本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形全等、圆的基本知识等,其中(2)①,要注意分类求解,避免遗漏. 8.(1)k=-3-a;对称轴x=1;y轴交点(0,-3);(2),顶点坐标(1,-5);(3)-5≤a<-4;(4)-1≤t≤2. 【解析】 【分析】 (1)将点P(2,-3)代入抛物线上,求得k用a表示的关系式;抛物线L的对称轴为直线,并求得抛物线与y轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标; (3)抛物线L顶点坐标(1,-a-3),点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a的取值范围; (4)分类讨论取a>0与a<0的情况进行讨论,找出的取值范围,即可求出t的取值范围. 【详解】 解:(1)∵将点P(2,-3)代入抛物线L:, ∴ ∴k=-3-a; 抛物线L的对称轴为直线,即x=1; 将x=0代入抛物线可得:,故与y轴交点坐标为(0,-3); (2)∵L经过点(3,3),将该点代入解析式中, ∴,且由(1)可得k=-3-a, ∴,解得a=2,k=-5, ∴L的表达式为; 将其表示为顶点式:, ∴顶点坐标为(1,-5); (3)解析式L的顶点坐标(1,-a-3), ∵在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y的取值分别为-2、-1、0、1, ∴1<-a-3≤2, ∴-5≤a<-4; (4)①当a<0时,∵,为保证,且抛物线L的对称轴为x=1, ∴就要保证的取值范围要在[-1,3]上, 即t≥-1且t+1≤3,解得-1≤t≤2; ②当a>0时,抛物线开口向上,t≥3或t+1≤-1,解得:t≥3或t≤-2,但会有不符合题意的点存在,故舍去, 综上所述:-1≤t≤2. 【点睛】 本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键. 9.(1);(2)面积最大值为;(3)存在, 【解析】 【分析】 (1)将点A、B的坐标代入抛物线表达式,即可求解; (2)设,求得解析式,过点P作x轴得垂线与直线AB交于点F,设点,则,,即可求解; (3)分BC为菱形的边、菱形的的对角线两种情况,分别求解即可. 【详解】 解:(1)∵抛物线过, ∴ ∴ ∴ (2)设,将点代入 ∴ 过点P作x轴得垂线与直线AB交于点F 设点,则 由铅垂定理可得 ∴面积最大值为 (3)(3)抛物线的表达式为:y=x2+4x−1=(x+2)2−5, 则平移后的抛物线表达式为:y=x2−5, 联立上述两式并解得:,故点C(−1,−4); 设点D(−2,m)、点E(s,t),而点B、C的坐标分别为(0,−1)、(−1,−4); ①当BC为菱形的边时, 点C向右平移1个单位向上平移3个单位得到B,同样D(E)向右平移1个单位向上平移3个单位得到E(D), 即−2+1=s且m+3=t①或−2−1=s且m−3=t②, 当点D在E的下方时,则BE=BC,即s2+(t+1)2=12+32③, 当点D在E的上方时,则BD=BC,即22+(m+1)2=12+32④, 联立①③并解得:s=−1,t=2或−4(舍去−4),故点E(−1,2); 联立②④并解得:s=-3,t=-4±,故点E(-3,-4+)或(-3,-4−); ②当BC为菱形的的对角线时, 则由中点公式得:−1=s−2且−4−1=m+t⑤, 此时,BD=BE,即22+(m+1)2=s2+(t+1)2⑥, 联立⑤⑥并解得:s=1,t=−3, 故点E(1,−3), 综上,点E的坐标为:(−1,2)或或或(1,−3). ∴存在, 【点睛】 本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏. 10.(1);(2)点E的坐标为(,);(3)存在;点的坐标为:(,)或(,)或(,)或(,). 【解析】 【分析】 (1)利用待定系数法代入计算,结合对称轴,即可求出解析式; (2)取AD中点M,连接BM,过点A作AE∥BM,交抛物线于点E;然后求出直线AE的解析式,结合抛物线的解析式,即可求出点E的坐标; (3)由题意,先求出点F的坐标,然后得到点Q的坐标,得到OQ和OB的长度,然后结合等腰三角形的性质进行分类讨论,可分为四种情况进行分析,分别求出点的坐标即可. 【详解】 解:(1)根据题意,设二次函数的解析式为, ∵对称轴为,则, 把点(-1,0),点(0,-3)代入,有 , 又∵, ∴,,, ∴抛物线的解析式为:; (2)由(1)可知, 顶点D的坐标为(1,),点B为(3,0), ∵点A为(,0), ∴AD的中点M的坐标为(0,2); 如图,连接AD,DE,BE,取AD中点M,连接BM,过点A作AE∥BM,交抛物线于点E; 此时点D到直线AE的距离等于点B到直线AE距离的2倍, 即, 设直线BM为, 把点B、点M代入,有, ∴直线BM为, ∴直线AE的斜率为, ∵点A为(,0), ∴直线AE为, ∴,解得:(舍去)或; ∴点E的坐标为(,); (3)由(2)可知,直线AE为, ∴点F的坐标为(0,), ∵将点F向下平移个单位长度得到Q, ∴点Q的坐标为(0,), ∴, ∵点B为(3,0),则OB=3, 在Rt△OBQ中,, ∴, 由旋转的性质,得,, ①当时,是等边三角形,如图: ∴点G的坐标为(,0), ∴点的横坐标为, ∴点的坐标为(,); ②当,是等腰三角形,如图: ∵, ∴, ∵, ∴点的坐标为(,); ③当时,是等边三角形,如图: 此时点G的坐标为(,0), ∴点的坐标为(,); ④当时,是等腰三角形,如图: 此时, ∴点的坐标为(,); 综合上述,点的坐标为:(,)或(,)或(,)或(,). 【点睛】 本题考查了二次函数的综合问题,也考查了解直角三角形,旋转的性质,等边三角形的性质,等腰三角形的性质,一次函数的性质,以及坐标与图形,解题的关键是熟练掌握图形的运动问题,正确的确定点的位置是关键;注意运用数形结合的思想,分类讨论的思想进行解题. 11.(1)不是,,;(2);(3)画图见解析, 【解析】 【分析】 (1)根据题意即可得到结论;因为是和谐点,所以根据题意得,再得到,列方程即可得到结论; (2)设,由可求得,再根据列出方程,求出的值即可解决问题; (3)根据题意画出图形,再过点作,根据平行线的性质可得结论. 【详解】 解:(1)不是和谐点. 根据题意,对于而言,面积为,周长为, 所以不是和谐点; 因为是和谐点, 所以根据题意得. ∵点P(a,3)是第一象限内的一个“和谐点”, ∴, ∴, 解得,将代入得, 解得. 所以,; (2), ,, 故设,则,, ,, , ,即, 解得,, , , 解得,, , ; (3)如图所示, 过作交于点, 由平移的性质得,, , 由得; 由得; , . 【点睛】 本题考查了一次函数图象上点的坐标特征:一次函数,,且,为常数)的图象是一条直线.它与轴的交点坐标是;与轴的交点坐标是;直线上任意一点的坐标都满足函数关系式. 12.(1)B点坐标(0,-1),平移后的抛物线为;(2)点M的坐标为或;(3)存在,,,,,详解见解析. 【解析】 【分析】 (1)将x=0代入抛物线公式求出y值,即可得到抛物线与y轴交点B的坐标,平移后的抛物线的顶点为E(1,4),可根据顶点式求出平移后抛物线的解析式; (2)因为抛物线向上平移4个单位,所以MN=4,又- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 上册 压轴 考试 试卷 详细 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文