苏教七年级下册期末解答题压轴数学试卷答案.doc
《苏教七年级下册期末解答题压轴数学试卷答案.doc》由会员分享,可在线阅读,更多相关《苏教七年级下册期末解答题压轴数学试卷答案.doc(21页珍藏版)》请在咨信网上搜索。
(完整版)苏教七年级下册期末解答题压轴数学试卷精选答案 一、解答题 1.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________ (2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么? (3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数. 2.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F. (1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: . (2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) . ① 求∠B的度数; ②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由. 3.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ; (2)如图②,若,作的平分线交于,交于,试说明; (3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围. 4.在中,,,点在直线上运动(不与点、重合),点在射线上运动,且,设. (1)如图①,当点在边上,且时,则__________,__________; (2)如图②,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由; (3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 5.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”. (1)如图1,在中,,是的角平分线,求证:是“准互余三角形”; (2)关于“准互余三角形”,有下列说法: ①在中,若,,,则是“准互余三角形”; ②若是“准互余三角形”,,,则; ③“准互余三角形”一定是钝角三角形. 其中正确的结论是___________(填写所有正确说法的序号); (3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数. 6.如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E. (1)∠E= °; (2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F. ①依题意在图1中补全图形; ②求∠AFC的度数; (3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若∠FAH,∠FPH和∠FCH满足的数量关系为∠FCH=m∠FAH+n∠FPH,请直接写出m,n的值. 7.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补. (1)试判断直线AB与直线CD的位置关系,并说明理由; (2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF//GH. (3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值若变化,说明理由. 8.模型规律:如图1,延长交于点D,则.因为凹四边形形似箭头,其四角具有“”这个规律,所以我们把这个模型叫做“箭头四角形”. 模型应用 (1)直接应用: ①如图2,,则__________; ②如图3,__________; (2)拓展应用: ①如图4,、的2等分线(即角平分线)、交于点,已知,,则__________; ②如图5,、分别为、的10等分线.它们的交点从上到下依次为、、、…、.已知,,则__________; ③如图6,、的角平分线、交于点D,已知,则__________; ④如图7,、的角平分线、交于点D,则、、之同的数量关系为__________. 9.(1)思考探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度数. (2)类比探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠P=n°.求∠A的度数(用含n的式子表示). (3)拓展迁移:已知,在四边形ABCD中,四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交于点P,∠P=n°,请画出图形;并探究出∠A+∠D的度数(用含n的式子表示). 10.已知E、D分别在的边、上,C为平面内一点,、分别是、的平分线. (1)如图1,若点C在上,且,求证:; (2)如图2,若点C在的内部,且,请猜想、、之间的数量关系,并证明; (3)若点C在的外部,且,请根据图3、图4直接写出结果出、、之间的数量关系. 【参考答案】 一、解答题 1.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=. 【分析】 (1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°, 解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=. 【分析】 (1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可; (2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可; (3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可. 【详解】 解:当108°的角是另一个内角的3倍时, 最小角为180°﹣108°﹣108÷3°=36°, 当180°﹣108°=72°的角是另一个内角的3倍时, 最小角为72°÷(1+3)=18°, 因此,这个“梦想三角形”的最小内角的度数为36°或18°. 故答案为:18°或36°. (2)△AOB、△AOC都是“梦想三角形” 证明:∵AB⊥OM, ∴∠OAB=90°, ∴∠ABO=90°﹣∠MON=30°, ∴∠OAB=3∠ABO, ∴△AOB为“梦想三角形”, ∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON, ∴∠OAC=80°﹣60°=20°, ∴∠AOB=3∠OAC, ∴△AOC是“梦想三角形”. (3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°, ∴∠EFC=∠ADC, ∴AD∥EF, ∴∠DEF=∠ADE, ∵∠DEF=∠B, ∴∠B=∠ADE, ∴DE∥BC, ∴∠CDE=∠BCD, ∵AE平分∠ADC, ∴∠ADE=∠CDE, ∴∠B=∠BCD, ∵△BCD是“梦想三角形”, ∴∠BDC=3∠B,或∠B=3∠BDC, ∵∠BDC+∠BCD+∠B=180°, ∴∠B=36°或∠B=. 【点睛】 本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键. 2.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得, 解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数. ②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可. 【详解】 (1)由翻折的性质可得:∠E=∠B, ∵∠BAC=90°,AE⊥BC, ∴∠DFE=90°, ∴180°-∠BAC=180°-∠DFE=90°, 即:∠B+∠C=∠E+∠FDE=90°, ∴∠C=∠FDE, ∴AC∥DE, ∴∠CAF=∠E, ∴∠CAF=∠E=∠B 故与∠B相等的角有∠CAF和∠E; ∵∠BAC=90°,AE⊥BC, ∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90° ∴∠BAF+∠CAF=∠CAF+∠C=90° ∴∠BAF=∠C 又AC∥DE, ∴∠C=∠CDE, ∴故与∠C相等的角有∠CDE、∠BAF; (2)①∵ ∴ 又∵, ∴∠C=70°,∠B=20°; ②∵∠BAD=x°, ∠B=20°则,, 由翻折可知:∵, , ∴, , 当∠FDE=∠DFE时,, 解得:; 当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去); 当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去); 综上所述,存在这样的x的值,使得△DEF中有两个角相等.且. 【点睛】 本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识. 3.(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠ 解析:(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE. (3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案. 详解:(1)S△BCD=CD•OC=×3×2=3. (2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE. (3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC ∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA ∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=. 点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解. 4.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析 【分析】 (1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC 解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析 【分析】 (1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°; (2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE; (3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE. 【详解】 解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°. ∵在△ABC中,∠BAC=100°,∠ABC=∠ACB, ∴∠ABC=∠ACB=40°, ∴∠ADC=∠ABC+∠BAD=40°+60°=100°. ∵∠DAC=40°,∠ADE=∠AED, ∴∠ADE=∠AED=70°, ∴∠CDE=∠ADC-∠ADE=100°-70°=30°. 故答案为60,30. (2)∠BAD=2∠CDE,理由如下: 如图②,在△ABC中,∠BAC=100°, ∴∠ABC=∠ACB=40°. 在△ADE中,∠DAC=n, ∴∠ADE=∠AED=, ∵∠ACB=∠CDE+∠AED, ∴∠CDE=∠ACB-∠AED=40°-=, ∵∠BAC=100°,∠DAC=n, ∴∠BAD=n-100°, ∴∠BAD=2∠CDE. (3)成立,∠BAD=2∠CDE,理由如下: 如图③,在△ABC中,∠BAC=100°, ∴∠ABC=∠ACB=40°, ∴∠ACD=140°. 在△ADE中,∠DAC=n, ∴∠ADE=∠AED=, ∵∠ACD=∠CDE+∠AED, ∴∠CDE=∠ACD-∠AED=140°-=, ∵∠BAC=100°,∠DAC=n, ∴∠BAD=100°+n, ∴∠BAD=2∠CDE. 【点睛】 本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键. 5.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (1)由和是的角平分线,证明即可; (2)根据“准互余三角形”的定义逐个判断即可; (3)根据“准互余三角 解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (1)由和是的角平分线,证明即可; (2)根据“准互余三角形”的定义逐个判断即可; (3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案. 【详解】 (1)证明:∵在中,, ∴, ∵BD是的角平分线, ∴, ∴, ∴是“准互余三角形”; (2)①∵, ∴, ∴是“准互余三角形”, 故①正确; ②∵, , ∴, ∴不是“准互余三角形”, 故②错误; ③设三角形的三个内角分别为,且, ∵三角形是“准互余三角形”, ∴或, ∴, ∴, ∴“准互余三角形”一定是钝角三角形, 故③正确; 综上所述,①③正确, 故答案为:①③; (3)∠APB的度数是10°或20°或40°或110°; 如图①, 当2∠A+∠ABC=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A=20°, ∴∠APB=110°; 如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A+∠APB=50°, ∴∠APB=40°; 如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠APB=20°; 如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A+∠APB=50°, 所以∠A=40°, 所以∠APB=10°; 综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”. 【点睛】 本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解. 6.(1)45;(2)67.5°;(3)m=2,n=﹣3. 【分析】 (1)根据角平分线的定义可得∠CAF=∠DAC,∠ACE=∠ACB,设∠CAF=x,∠ACE=y,根据已知可推导得出x﹣y=45,再 解析:(1)45;(2)67.5°;(3)m=2,n=﹣3. 【分析】 (1)根据角平分线的定义可得∠CAF=∠DAC,∠ACE=∠ACB,设∠CAF=x,∠ACE=y,根据已知可推导得出x﹣y=45,再根据三角形外角的性质即可求得答案; (2)①根据角平分线的尺规作图的方法作出图形即可; ②如图2,由CF平分∠ECB可得∠ECF=y,再根据∠E+∠EAF=∠F+∠ECF以及∠E+∠EAB=∠B+∠ECB,可推导得出45°+=∠F+y,由此即可求得答案; (3)如图3,设∠FAH=α,根据AF平分∠EAB可得∠FAH=∠EAF=α,根据已知可推导得出∠FCH=α﹣22.5①,α+22.5=30+∠FCH+∠FPH②,由此可得∠FPH=,再根据∠FCH=m∠FAH+n∠FPH,即可求得答案. 【详解】 (1)如图1, ∵EA平分∠DAC,EC平分∠ACB, ∴∠CAF=∠DAC,∠ACE=∠ACB, 设∠CAF=x,∠ACE=y, ∵∠B=90°, ∴∠ACB+∠BAC=90°, ∴2y+180﹣2x=90, x﹣y=45, ∵∠CAF=∠E+∠ACE, ∴∠E=∠CAF﹣∠ACE=x﹣y=45°, 故答案为45; (2)①如图2所示, ②如图2,∵CF平分∠ECB, ∴∠ECF=y, ∵∠E+∠EAF=∠F+∠ECF, ∴45°+∠EAF=∠F+y ①, 同理可得:∠E+∠EAB=∠B+∠ECB, ∴45°+2∠EAF=90°+y, ∴∠EAF=②, 把②代入①得:45°+=∠F+y, ∴∠F=67.5°, 即∠AFC=67.5°; (3)如图3,设∠FAH=α, ∵AF平分∠EAB, ∴∠FAH=∠EAF=α, ∵∠AFM=∠AFC=×67.5°=22.5°, ∵∠E+∠EAF=∠AFC+∠FCH, ∴45+α=67.5+∠FCH, ∴∠FCH=α﹣22.5①, ∵∠AHN=∠AHC=(∠B+∠BCH)=(90+2∠FCH)=30+∠FCH, ∵∠FAH+∠AFM=∠AHN+∠FPH, ∴α+22.5=30+∠FCH+∠FPH,② 把①代入②得:∠FPH=, ∵∠FCH=m∠FAH+n∠FPH, α﹣22.5=mα+n, 解得:m=2,n=﹣3. 【点睛】 本题考查了三角形内角和定理、三角形外角的性质、基本作图——角平分线等,熟练掌握三角形内角和定理以及三角形外角的性质、结合图形进行求解是关键. 7.(1)见详解;(2)见详解;(3)∠HPQ的大小不发生变化,理由见详解. 【分析】 (1)根据同旁内角互补,两条直线平行即可判断直线AB与直线CD平行; (2)先根据两条直线平行,同旁内角互补,再根 解析:(1)见详解;(2)见详解;(3)∠HPQ的大小不发生变化,理由见详解. 【分析】 (1)根据同旁内角互补,两条直线平行即可判断直线AB与直线CD平行; (2)先根据两条直线平行,同旁内角互补,再根据∠BEF与∠EFD的角平分线交于点P,可得∠EPF=90°,进而证明PF∥GH; (3)根据角平分线定义,及角的和差计算即可求得∠HPQ的度数,进而即可得到结论. 【详解】 解:(1)AB∥CD,理由如下: ∵∠1与∠2互补, ∴∠1+∠2=180°, 又∵∠1=∠AEF,∠2=∠CFE, ∴∠AEF+∠CFE=180°, ∴AB∥CD; (2)由(1)知,AB∥CD, ∴∠BEF+∠EFD=180°. 又∵∠BEF与∠EFD的角平分线交于点P, ∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°, ∴∠EPF=90°,即EG⊥PF. ∵GH⊥EG, ∴PF∥GH; (3)∵∠PHK=∠HPK, ∴∠PKG=2∠HPK. 又∵GH⊥EG, ∴∠KPG=90°−∠PKG=90°−2∠HPK. ∴∠EPK=180°−∠KPG=90°+2∠HPK. ∵PQ平分∠EPK, ∴∠QPK=∠EPK=45°+∠HPK. ∴∠HPQ=∠QPK−∠HPK=45°. ∴∠HPQ的大小不发生变化. 【点睛】 本题考查了平行线的判定和性质、余角和补角,解决本题的关键是综合运用角平分线的定义、平行线的性质、余角和补角. 8.(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0 【分析】 (1)①根据题干中的等式直接计算即可; ②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DO 解析:(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0 【分析】 (1)①根据题干中的等式直接计算即可; ②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE,代入计算即可; (2)①同理可得∠BO1C=∠BOC-∠OBO1-∠OCO1,代入计算可得; ②同理可得∠BO7C=∠BOC-(∠BOC-∠A),代入计算即可; ③利用∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)计算可得; ④根据两个凹四边形ABOD和ABOC得到两个等式,联立可得结论. 【详解】 解:(1)①∠BOC=∠A+∠B+∠C=60°+20°+30°=110°; ②∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE=2×130°=260°; (2)①∠BO1C=∠BOC-∠OBO1-∠OCO1 =∠BOC-(∠ABO+∠ACO) =∠BOC-(∠BOC-∠A) =∠BOC-(120°-50°) =120°-35° =85°; ②∠BO7C=∠BOC-(∠BOC-∠A) =120°-(120°-50°) =120°-10° =110°; ③∠ADB=180°-(∠ABD+∠BAD) =180°-(∠BOC-∠C) =180°-(120°-44°) =142°; ④∠BOD=∠BOC=∠B+∠D+∠BAC, ∠BOC=∠B+∠C+∠BAC, 联立得:∠B-∠C+2∠D=0. 【点睛】 本题主要考查了新定义—箭头四角形,利用了三角形外角的性质,还考查了角平分线的定义,图形类规律,解题的关键是理解箭头四角形,并能熟练运用其性质. 9.(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)画图见解析;∠A+∠D=180°+2n°或180°﹣2n°. 【分析】 (1) 根据三角形内角和定理可以算出∠A的大小,再根据角平分线的性 解析:(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)画图见解析;∠A+∠D=180°+2n°或180°﹣2n°. 【分析】 (1) 根据三角形内角和定理可以算出∠A的大小,再根据角平分线的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠PCD=∠P+∠PBC,即可得解; (2)和(1)证明方法类似,先证明∠A+∠ABC=2(∠P+∠PBC),再证明∠A=2∠P即可得到答案; (3) 延长BA交CD的延长线于F根据三角形内角和定理和三角形的一个外角等于与它不相邻的两个内角的和,即可得到第一种情况;延长AB交DC的延长线于F,同理即可得到答案. 【详解】 解:(1)∠A=30°,∠P=15° ∵∠ACD+∠ACB=180°,∠ACD=100° ∴∠ACB=80°, ∵∠ABC+∠ACB+∠A=180°(三角形内角和定理), 又∵∠ABC=70°, ∴∠A=30°, ∵P点是∠ABC和外角∠ACD的角平分线的交点, ∴∠PCD=∠ACD=50°,∠PBC=∠ABC=35° ∵∠PBC+∠PCB+∠P=180°,∠PCB+∠PCD=180° ∴∠PCD=∠PBC+∠P ∴∠P=50°-35°=15° (2)结论:∠A=2n°,理由如下: ∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC(三角形的一个外角等于与它不相邻的两个内角和), 又∵P点是∠ABC和外角∠ACD的角平分线的交点, ∴∠ACD=2∠PCD,∠ABC=2∠PBC, ∴∠A+∠ABC=2(∠P+∠PBC)(等量替换), ∴∠A+∠ABC=2∠P+2∠PBC, ∴∠A+∠ABC=2∠P+∠ABC(等量替换), ∴∠A=2∠P; ∴∠A=2n° (3)(Ⅰ)如图②延长BA交CD的延长线于F. ∵∠F=180°﹣∠FAD﹣∠FDA =180°﹣(180°﹣∠A)﹣(180°﹣∠D) =∠A+∠D﹣180°, 由(2)可知:∠F=2∠P=2n°, ∴∠A+∠D=180°+2n°。 (Ⅱ)如图③,延长AB交DC的延长线于F. ∵∠F=180°﹣∠A﹣∠D,∠P=∠F, ∴∠P=(180°﹣∠A﹣∠D)=90°﹣(∠A+∠D). ∴∠A+∠D=180°﹣2n° 综上所述:∠A+∠D=180°+2n°或180°﹣2n° ; 【点睛】 本题主要考查三角形综合题,三角形内角和定理、四边形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用已知结论解决问题,属于中考常考题型. 10.(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE. 【分析】 (1)依据DE、DF分别是∠CDO、∠CDB的平 解析:(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE. 【分析】 (1)依据DE、DF分别是∠CDO、∠CDB的平分线,可得∠CDF=∠CDB,∠CDE=∠CDO,进而得出∠EDF=(∠CDB+∠CDO)=90°,再根据平行线的性质,即可得到∠AED=90°,即DE⊥AO; (2)连接OC,依据∠DEO=∠DEC,∠EDO=∠EDC,可得∠DOE=∠DCE,再根据三角形外角性质,即可得到∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE; (3)如图3中,依据∠CDB是△ODG的外角,可得∠CDB=∠DOG+∠DGO,依据∠DGO是△CEG的外角,可得∠DGO=∠AEC+∠C,进而得到∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4中,同理可得∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE. 【详解】 解:(1)如图1,∵DE、DF分别是∠CDO、∠CDB的平分线, ∴∠CDF=∠CDB,∠CDE=∠CDO, ∴∠EDF=(∠CDB+∠CDO)=90°, 又∵DF∥AO, ∴∠AED=90°, ∴DE⊥AO; (2)如图2,连接OC, ∵∠DEO=∠DEC,∠EDO=∠EDC, ∴∠DOE=∠DCE, ∵∠CDB是△COD的外角,∠AEC是△COE的外角, ∴∠CDB=∠COD+∠OCD,∠AEC=∠EOC+∠ECO, ∴∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE; (3)图3中,∠CDB=∠AEC+2∠DCE;图4中,∠AEC=∠CDB+2∠DCE.理由: 如图3,∵∠DEO=∠DEC,∠EDO=∠EDC, ∴∠DOE=∠DCE, ∵∠CDB是△ODG的外角, ∴∠CDB=∠DOG+∠DGO, ∵∠DGO是△CEG的外角, ∴∠DGO=∠AEC+∠C, ∴∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE; 如图4,∵∠DEO=∠DEC,∠EDO=∠EDC, ∴∠DOE=∠DCE, ∵∠AEC是△OEH的外角, ∴∠AEC=∠DOE+∠OHE, ∵∠OHE是△CDH的外角, ∴∠OHE=∠CDB+∠C, ∴∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE. 【点睛】 本题主要考查了平行线的性质以及三角形外角性质的综合运用,解题时注意:三角形的外角等于与它不相邻的两个内角的和.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 苏教七 年级 下册 期末 解答 压轴 数学试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文