2014年山东省东营市中考数学试卷及答案.doc
《2014年山东省东营市中考数学试卷及答案.doc》由会员分享,可在线阅读,更多相关《2014年山东省东营市中考数学试卷及答案.doc(37页珍藏版)》请在咨信网上搜索。
秘密★启用前 试卷类型:A 二0一四年东营市初中学生学业考试 数 学 试 题 (总分120分 考试时间120分钟) 注意事项: 1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页. 2. 数学试题答案卡共8页.答题前,考生务必将自己的姓名、考号、考试科目等涂写在试题和答题卡上,考试结束,试题和答题卡一并收回. 3. 第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm碳素笔答在答题卡的相应位置上. 4. 考试时,不允许使用科学计算器. 第Ⅰ卷(选择题 共30分) 一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.的平方根是( ) A. B. 3 C. D. 9 2.下列计算错误的是( ) A. B. C.-2+|-2|=0 D. 3.直线经过的象限是( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限 4.下列命题中是真命题的是( ) A.如果,那么 B.对角线互相垂直的四边形是菱形 C.旋转前后的两个图形,对应点所连线段相等 D.线段垂直平分线上的点到这条线段两个端点的距离相等 (第5题图) 5.如图,已知扇形的圆心角为,半径为,则图中弓形的面积为( ) A. B. C. D. 2 2 1 3 1 1 6.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( ) A. B. C. D. 7.下列关于位似图形的表述: ①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心; ③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么, 这两个图形是位似图形; ④位似图形上任意两点与位似中心的距离之比等于位似比. 其中正确命题的序号是( ) A.②③ B.①② C.③④ D.②③④ (第8题图) 8.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖 落在阴影区域的概率是( ) A. B. C. D. 9.若函数的图象与轴只有一个交点,那么的值为( ) A.0 B.0或2 C.2或-2 D.0,2或-2 (第10题图) 10.如图,四边形ABCD为菱形,AB=BD,点B、C、D、G四个点在同一个圆上,连接BG并延长交AD于点F,连接DG并延长交AB于点E,BD与CG交于点H,连接FH.下列结论: ①AE=DF;②FH∥AB; ③△DGH∽△BGE;④当CG为的直径时,DF=AF. 其中正确结论的个数是( ) A.1 B.2 C.3 D.4 第Ⅱ卷(非选择题 共90分) 二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果. 11.2013年东营市围绕“转方式,调结构,扩总量,增实力,上水平”的工作大局,经济平稳较快增长,全年GDP达到3250亿元.3250亿元用科学记数法表示为 元. 12. . 甲 乙 丙 丁 平均数 8.2 8.0 8.2 8.0 方差 2.0 1.8 1.5 1.6 (第14题图) 13.市运会举行射击比赛,某校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如右表.请你根据表中数据选一人参加比赛,最合适的人选是 . 14.如图,有两棵树,一棵高12米,另一棵高6米, 两树相距8米.一只鸟从一棵树的树梢飞到另一棵树 的树梢,问小鸟至少飞行 米. 15.如果实数、是方程组的解,那么代数式的值 为 . (第16题图) x y A P B D C O (第17题图) 16.在⊙O中,AB是⊙O的直径,AB=8cm,,M是AB上一动点,CM+DM的最小值是 cm. 17.如图,函数和的图象分别是和.设点P在上,PC⊥x轴,垂足为C,交于点A,PD⊥y轴,垂足为D,交于点B,则三角形PAB的面积为 . 18.将自然数按以下规律排列: 第一列 第二列 第三列 第四列 第五列 第一行 1 4 5 16 17 … 第二行 2 3 6 15 … 第三行 9 8 7 14 … 第四行 10 11 12 13 … 第五行 … …… 表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2014对应的有序数对为 . 三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤. 19. (本题满分7分,第⑴题3分,第⑵题4分) (1)计算: 2 1 0 -1 -2_ (2)解不等式组:把解集在数轴上表示出来,并将解集中的整数解写出来. 20.(本题满分8分)东营市某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图. 公务员 (第20题图) 职业 教师 人数 20 40 60 80 医生 军人 其他 0 其他 20% 教师 公务员 医生15% 军人10% (1)求出被调查的学生人数; (2)把折线统计图补充完整; (3)求出扇形统计图中,公务员部分对应的圆心角的度数; (4)若从被调查的学生中任意抽取一名,求抽取的这名学生最喜欢的职业是“教师”的概率. (第21题图) 21.(本题满分8分)如图,AB是⊙O的直径.OD垂直于弦AC于点E,且交⊙O于点D.F是BA延长线上一点,若. (1)求证:FD是⊙O的一条切线; (2)若AB=10,AC=8,求DF的长. (第22题图) B A C 22.(本题满分8分) 热气球的探测器显示,从热气球底部A处看一栋高楼顶部的仰角为,看这栋楼底部的俯角为,热气球A处与高楼的水平距离为120m,这栋高楼有多高(,结果保留小数点后一位)? 23. (本题满分8分)为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,须在40天内完成工程.现有甲、乙两个工程队有意承包这项工程.经调查知道:乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成. (1)甲、乙两个工程队单独完成此项工程各需多少天? (2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能按时完工,又能使工程费用最少. (第24题图1) 24.(本题满分11分) 【探究发现】如图1,是等边三角形,,EF交等边三角形外角平分线CF所在的直线于点F.当点E是BC的中点时,有AE=EF成立; 【数学思考】某数学兴趣小组在探究AE、EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上(B,C除外)任意一点时(其它条件不变),结论AE=EF仍然成立. 假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“ 点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并进行证明. (第24题备用图2) (第24题备用图1) 【拓展应用】当点E在线段BC的延长线上时,若CE = BC,在备用图2中画出图形,并运用上述结论求出的值. (第25题图) 25.(本题满分12分) 如图,直线y=2x+2与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,过点B的抛物线与直线BC交于点D(3,). (1)求直线BD和抛物线的解析式; (2)在第一象限内的抛物线上,是否存在一点M,作MN垂直于x轴,垂足为点N,使得以M、O、N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由; (3)在直线BD上方的抛物线上有一动点,过点作PH垂直于x轴,交直线BD于点.当四边形是平行四边形时,试求动点的坐标. 秘密★启用前 试卷类型:A 数学试题参考答案及评分标准 评卷说明: 1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见相应评分. 3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分. 一.选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,共30分.选错、不选或选出的答案超过一个均记零分. 题号 1 2 3 4 5 6 7 8 9 10 答案 A B B D C B A C D D 二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分,只要求填写最后结果. 11.;12.;13.丙; 14.10; 15.1; 16.8; 17. 8 ;18.(45,12). 三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤. 19. (本题满分7分) (1)解: =1+2+1………………………………………………………………2分 =6-……………………………………………………………………………3分 (2)解: 解不等式①,得:x<1,解不等式②,得:x≥…………………………………………1分 所以不等式组的解集为:≤x<1. ………………………………………………………2分 解集中的整数解有.……………………………………………………………………3分 2 1 0 -1 -2_ · …………………………………………………………………………………………………4分 20. (本题满分8分) 公务员 (第20题图) 职业 教师 人数 20 40 60 80 医生 军人 其他 0 其他 20% 教师 公务员 医生15% 军人10% 20% 35% 解: (1)由公务员所占比例及相应人数可求出被调查的学生数是: 40÷20%=200(人);……………………………………………………………………1分 (2)喜欢医生职业的人数为:200×15=30(人);…………………………………………2分 喜欢教师职业的人数为:200-70-20-40-30=40(人);………………………………3分 折线统计图如图所示;…………………………………………………………………4分 (3)扇形统计图中,公务员部分对应圆心角的度数是360°×20%=72°;………………6分 (4)抽取的这名学生最喜欢的职业是教师的概率是: .…………………………………………………………………………………8分 21.(本题满分8分) 第21题图 (1)证明: (已知), (圆周角相等) ……………………………………1分 在与中, ,(公共角) D是半径OD外端点, FD是⊙O的一条切线.…………………………………………………………………4分 (2)在与中, , ∽ ,…………………………………………………………………………6分 AB=10,AC=8,OD⊥AC …………………………………………………………………………………………………8分 22. (本题满分8分) 解:如图,作AD⊥BC于点D,从热气球看这栋高楼顶部的仰角记为,看这栋楼底部的俯角记为,则,AD=120. ,………………………2分 BD= =120,…………………………………………………………4分 CD= =120,…………………………………………………………6分 BC=BD+CD=+=………………………………7分 答:这栋楼高约为277.1m.………………………………………………………8分 23. (本题满分8分) 解:(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需2天. 根据题意得:………………………………………………………………2分 方程两边同乘以,得 解得: 经检验,是原方程的解.…………………………………………………………3分 ∴当=15时,=30. 答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天. ………4分 (2)因为甲乙两工程队均能在规定的40天内单独完成,所以有如下三种方案: 方案一:由甲工程队单独完成.所需费用为:4.5×15=67.5(万元);……………………5分 方案二:由乙工程队单独完成.所需费用为:2.5×30=75(万元);………………………6分 方案三:由甲乙两队合作完成.所需费用为:(4.5+2.5)×10=70(万元).……………7分 ∵75>70>67.5 ∴应该选择甲工程队承包该项工程. ……………………………………8分 24.(本题满分11分) (1) 正确画出图形……………………………………………………………………………1分 ①第一种情况:当点E在线段BC上时. 证明:在AB上取AG=CE,连接EG. 则是等边三角形 ∴∠AGE=,而∠ECF= ∴∠AGE=∠ECF…………………………………2分 ∵∠AEC=∠AEF+∠CEF=∠GAE+∠B, ∴∠GAE=∠CEF……………………………………………………………………………4分 ∴≌(ASA) ∴AE=EF………………………………………………………………………………………6分 ②第二种情况:当点E在BC延长线上时. 在CF取CG=CE,连接EG. ∵CF是等边三角形外角平分线 ∴∠ECF= ∵CG=CE ∴是等边三角形 ∴∠FGE=∠ACE=………………………………2分 ∵∠AEF=∠AEG+∠GEF=∠AEG+∠AEC= ∴∠GEF=∠CEA……………………………………………………………………………4分 ∴≌(ASA) ∴AE=EF………………………………………………………………………………………6分 ③第三种情况:当点E在BC的反向延长线上时. 在AB的延长线上取AG=CE,连接EG. 则有BG= BE;∴是等边三角形 ∴∠G=∠ECF=………………………………2分 ∵∠CEF=∠AEF-∠AEC=-∠AEC ∠EAB=∠ABC-∠AEC=-∠AEC ∴∠CEF=∠EAB……………………………………………4分 ∴≌(ASA) ∴AE=EF……………………………………………………6分 (2)正确画出图形…………………………………………7分 ∵CE = BC=AC ∴∠CAE=∠CEA=,∠BAE= ∴………………………………………………………………………9分 ∵AE=EF,∠AEF= ∴是等边三角形 ∴∽…………………………………………………………………………10分 ∴.…………………………………………………………11分 25. (本题满分12分) 解:(1)在直线中,令得,所以得点B 设直线BD的解析式为:, 代入B、D两点坐标得 解得:. 所以直线BD的解析式为:.……………………………………………1分 将B、D两点坐标代入抛物线中得: 解得:. 所以,抛物线的解析式为:.……………………………………3分 (2)存在.……………………………………………………………4分 假设存在点M(x,y)符合题意,则有如下两种情形: ①若∽,则,所以有, 即又因为M点在抛物线上所以, 所以: 即: 解得或, 又因为M点在第一象限,不符合题意, 所以,故M.………………………6分 ②若∽, 则即, 所以 即: 解得或, 又因为M点在第一象限,不符合题意, 所以,故M(,)………………………8分 所以,符合条件的点M的坐标为 ,(,)………………………9分 (3)设点P坐标为则 又因为点P在直线BD上方, 所以0<<3, 又PH 垂直于x轴,交直线BD于点, 所以H, 所以,……………………………………10分 因为四边形是平行四边形, 所以PH=OB=2, 即, 解得或均满足0<<3………………………………………………………11分 当时,, 当时,, 所以点P的坐标为, ……………………………………………………12分 2014年山东省东营市中考数学试卷 一、选择题(共10小题,每小题只有一个选项正确,每小题选对得3分,错选不选或选出的答案超过一个均记零分) 1.(3分)(2014年山东东营)的平方根是( ) A. ±3 B. 3 C. ±9 D. 9 考点: 平方根;算术平方根. 分析: 根据平方运算,可得平方根、算术平方根. 解答: 解:∵, 9的平方根是±3, 故答案选A. 点评: 本题考查了算术平方根,平方运算是求平方根的关键. 2.(3分)(2014年山东东营)下列计算错误的是( ) A. 3﹣=2 B. x2•x3=x6 C. ﹣2+|﹣2|=0 D. (﹣3)﹣2= 考点: 二次根式的加减法;有理数的加法;同底数幂的乘法;负整数指数幂. 分析: 四个选项中分别根据二次根式的加减法求解,同底数幂的乘法法则求解,绝对值的加减法用负整数指数幂的法则求解. 解答: 解:A,3﹣=2正确, B,x2•x3=x6 同底数的数相乘,底数不变指数相加,故错, C,﹣2+|﹣2|=0,﹣2+2=0,正确, D,(﹣3)﹣2==正确. 故选:B. 点评: 本题主要考查了二次根式的加减法,同底数幂的乘法,绝对值的加减法,负整数指数幂,解题的关键是根据它们各自和法则认真运算. 3.(3分)(2014年山东东营)直线y=﹣x+1经过的象限是( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第二、三、四象限 D. 第一、三、四象限 考点: 一次函数图象与系数的关系. 分析: 根据一次函数的性质解答即可. 解答: 解:由于﹣1<0,1>0, 故函数过一、二、四象限, 故选B. 点评: 本题考查了一次函数的性质,要知道,对于y=kx+b(k≠0)来说,k、b的符号决定函数所过的象限. 4.(3分)(2014年山东东营)下列命题中是真命题的是( ) A. 如果a2=b2,那么a=b B. 对角线互相垂直的四边形是菱形 C. 旋转前后的两个图形,对应点所连线段相等 D. 线段垂直平分线上的点与这条线段两个端点的距离相等 考点: 命题与定理. 分析: 利用菱形的判定、旋转的性质及垂直平分线的性质对每个选项进行判断后即可得到正确的选项. 解答: 解:A、错误,如3与﹣3; B、对角线互相垂直的平行四边形是菱形,故错误,是假命题; C、旋转前后的两个图形,对应点所连线段不一定相等,故错误,是假命题; D、正确,是真命题, 故选D. 点评: 本题考查了命题与定理的知识,解题的关键是理解菱形的判定、旋转的性质及垂直平分线的性质. 5.(3分)(2014年山东东营)如图,已知扇形的圆心角为60°,半径为,则图中弓形的面积为( ) A. B. C. D. 考点: 扇形面积的计算. 分析: 过A作AD⊥CB,首先计算出BC上的高AD长,再计算出三角形ABC的面积和扇形面积,然后再利用扇形面积减去三角形的面积可得弓形面积. 解答: 解:过A作AD⊥CB, ∵∠CAB=60°,AC=AB, ∴△ABC是等边三角形, ∵AC=, ∴AD=AC•sin60°=×=, ∴△ABC面积:=, ∵扇形面积:=, ∴弓形的面积为:﹣=, 故选:C. 点评: 此题主要考查了扇形面积的计算,关键是掌握扇形的面积公式:S=. 6.(3分)(2014年山东东营)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( ) A. B. C. D. 考点: 由三视图判断几何体;简单组合体的三视图. 分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 解答: 解:从俯视图可以看出直观图的各部分的个数, 可得出左视图前面有2个,中间有3个,后面有1个, 即可得出左视图的形状. 故选B. 点评: 此题主要考查了三视图的概念.根据俯视图得出每一组小正方体的个数是解决问题的关键. 7.(3分)(2014年山东东营)下列关于位似图形的表述: ①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心; ③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形; ④位似图形上任意两点与位似中心的距离之比等于位似比. 其中正确命题的序号是( ) A. ②③ B. ①② C. ③④ D. ②③④ 考点: 位似变换;命题与定理. 分析: 利用位似图形的定义与性质分别判断得出即可. 解答: 解:①相似图形不一定是位似图形,位似图形一定是相似图形,故此选项错误; ②位似图形一定有位似中心,此选项正确; ③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,此选项正确; ④位似图形上任意两点与位似中心的距离之比等于位似比,此选项错误. 正确的选项为②③. 故选:A. 点评: 此题主要考查了位似图形的性质与定义,熟练掌握位似图形的性质是解题关键. 8.(3分)(2014年山东东营)小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( ) A. B. C. D. 考点: 几何概率;平行四边形的性质. 分析: 先根据平行四边形的性质求出平行四边形对角线所分的四个三角形面积相等,再求出S1=S2即可. 解答: 解:根据平行四边形的性质可得:平行四边形的对角线把平行四边形分成的四个面积相等的三角形, 根据平行线的性质可得S1=S2,则阴影部分的面积占, 故飞镖落在阴影区域的概率为:; 故选C. 点评: 此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是根据平行线的性质求出阴影部分的面积与总面积的比. 9.(3分)(2014年山东东营)若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为( ) A. 0 B. 0或2 C. 2或﹣2 D. 0,2或﹣2 考点: 抛物线与x轴的交点. 分析: 分为两种情况:函数是二次函数,函数是一次函数,求出即可. 解答: 解:分为两种情况:①当函数是二次函数时, ∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点, ∴△=(m+2)2﹣4m(m+1)=0且m≠0, 解得:m=±2, ②当函数时一次函数时,m=0, 此时函数解析式是y=2x+1,和x轴只有一个交点, 故选D. 点评: 本题考查了抛物线与x轴的交点,根的判别式的应用,用了分类讨论思想,题目比较好,但是也比较容易出错. 10.(3分)(2014年山东东营)如图,四边形ABCD为菱形,AB=BD,点B、C、D、G四个点在同一个圆⊙O上,连接BG并延长交AD于点F,连接DG并延长交AB于点E,BD与CG交于点H,连接FH,下列结论: ①AE=DF;②FH∥AB;③△DGH∽△BGE;④当CG为⊙O的直径时,DF=AF. 其中正确结论的个数是( ) A. 1 B. 2 C. 3 D. 4 考点: 圆的综合题. 分析: ①由四边形ABCD是菱形,AB=BD,得出△ABD和△BCD是等边三角形,再由B、C、D、G四个点在同一个圆上,得出∠ADE=∠DBF,由△ADE≌△DBF,得出AE=DF, ②利用内错角相等∠FBA=∠HFB,求证FH∥AB, ③利用∠DGH=∠EGB和∠EDB=∠FBA,求证△DGH∽△BGE, ④利用CG为⊙O的直径及B、C、D、G四个点共圆,求出∠ABF=120°﹣90°=30°,在RT△AFB中求出AF=AB, 在RT△DFB中求出FD=BD,再求得DF=AF. 解答: 解:①∵四边形ABCD是菱形, ∴AB=BC=DC=AD, 又∵AB=BD, ∴△ABD和△BCD是等边三角形, ∴∠A=∠ABD=∠DBC=∠BCD=∠CDB=∠BDA=60°, 又∵B、C、D、G四个点在同一个圆上, ∴∠DCH=∠DBF,∠GDH=∠BCH, ∴∠ADE=∠ADB﹣∠GDH=60°﹣∠EDB,∠DCH=∠BCD﹣∠BCH=60°﹣∠BCH, ∴∠ADE=∠DCH, ∴∠ADE=∠DBF, 在△ADE和△DBF中, ∴△ADE≌△DBF(ASA) ∴AE=DF 故①正确, ②由①中证得∠ADE=∠DBF, ∴∠EDB=∠FBA, ∵B、C、D、G四个点在同一个圆上,∠BDC=60°,∠DBC=60°, ∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°, ∴∠BGE=180°﹣∠BGC﹣∠DGC=180°﹣60°﹣60°=60°, ∴FGD=60°, ∴FGH=120°, 又∵∠ADB=60°, ∴F、G、H、D四个点在同一个圆上, ∴∠EDB=∠HFB, ∴∠FBA=∠HFB, ∴FH∥AB, 故②正确, ③∵B、C、D、G四个点在同一个圆上,∠DBC=60°, ∴∠DGH=∠DBC=60°, ∵∠EGB=60°, ∴∠DGH=∠EGB, 由①中证得∠ADE=∠DBF, ∴∠EDB=∠FBA, ∴△DGH∽△BGE, 故③正确, ④如下图 ∵CG为⊙O的直径,点B、C、D、G四个点在同一个圆⊙O上, ∴∠GBC=∠GDC=90°, ∴∠ABF=120°﹣90°=30°, ∵∠A=60°, ∴∠AFB=90°, ∴AF=AB, 又∵∠DBF=60°﹣30°=30°,∠ADB=60°, ∴∠DFB=90°, ∴FD=BD, ∵AB=BD, ∴DF=AF, 故④正确, 故选:D. 点评: 此题综合考查了圆及菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,运用四点共圆找出相等的角是解题的关键.解题时注意各知识点的融会贯通. 二、填空题(共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分) 11.(3分)(2014年山东东营)2013年东营市围绕“转方式,调结构,扩总量,增实力,上水平”的工作大局,经济平稳较快增长,全年GDP达到3250亿元,3250亿元用科学记数法表示为 3.25×1011 . 考点: 科学记数法—表示较大的数. 分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 解答: 解:将3250亿用科学记数法表示为:3.25×1011. 故答案为:3.25×1011. 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 12.(3分)(2014年山东东营)3x2y﹣27y= 3y(x+3)(x﹣3) . 考点: 提公因式法与公式法的综合运用. 分析: 首先提取公因式3y,再利用平方差进行二次分解即可. 解答: 解:原式=3y(x2﹣9)=3y(x+3)(x﹣3), 故答案为:3y(x+3)(x﹣3). 点评: 本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 13.(3分)(2014年山东东营)市运会举行射击比赛,某校射击队从甲、乙、丙、丁四人中选拔一人参赛,在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表,请你根据表中数据选一人参加比赛,最合适的人选是 丙 . 甲 乙 丙 丁 平均数 8.2 8.0 8.2 8.0 方差 2.0 1.8 1.5 1.6 考点: 方差;算术平均数. 分析: 根据甲,乙,丙,丁四个人中甲和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,得到丙最合适的人选. 解答: 解:∵甲,乙,丙,丁四个人中甲和丙的平均数最大且相等, 甲,乙,丙,丁四个人中丙的方差最小, 说明丙的成绩最稳定, ∴综合平均数和方差两个方面说明丙成绩既高又稳定, ∴最合适的人选是丙. 故答案为:丙. 点评: 本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 14.(3分)(2014年山东东营)如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行 10 米. 考点: 勾股定理的应用. 分析: 根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出. 解答: 解:如图,设大树高为AB=12m, 小树高为CD=6m, 过C点作CE⊥AB于E,则四边形EBDC是矩形, 连接AC, ∴EB=6m,EC=8m,AE=AB﹣EB=12﹣6=6(m), 在Rt△AEC中,AC==10(m). 故小鸟至少飞行10m. 故答案为:10. 点评: 本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力. 15.(4分)(2014年山东东营)如果实数x,y满足方程组,那么代数式(+2)÷的值为 1 . 考点: 分式的化简求值;解二元一次方程组. 专题: 计算题. 分析: 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值. 解答: 解:原式=•(x+y)=xy+2x+2y, 方程组,解得:, 当x=3,y=﹣1时,原式=﹣3+6﹣2=1. 故答案为:1 点评: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 16.(4分)(2014年山东东营)在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM的最小值是 8 cm. 考点: 轴对称-最短路线问题;勾股定理;垂径定理. 分析: 作点C关于AB的对称点C′,连接C′D与AB相交于点M,根据轴对称确定最短路线问题,点M为CM+DM的最小值时的位置,根据垂径定理可得=,然后求出C′D为直径,从而得解. 解答: 解:如图,作点C关于AB的对称点C′,连接C′D与AB相交于点M, 此时,点M为CM+DM的最小值时的位置, 由垂径定理,=, ∴=, ∵==,AB为直径, ∴C′D为直径, ∴CM+DM的最小值是8cm. 故答案为:8. 点评: 本题考查了轴对称确定最短路线问题,垂径定理,熟记定理并作出图形,判断出CM+DM的最小值等于圆的直径的长度是解题的关键. 17.(4分)(2014年山东东营)如图,函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为 8 . 考点: 反比例函数系数k的几何意义. 分析: 设P的坐标是(a,),推出A的坐标和B的坐标,求出∠APB=90°,求出PA、PB的值,根据三角形的面积公式求出即可. 解答: 解:∵点P在y=上, ∴|xp|×|yp|=|k|=1, ∴设P的坐标是(a,)(a为正数), ∵PA⊥x轴, ∴A的横坐标是a, ∵A在y=﹣上, ∴A的坐标是(a,﹣), ∵PB⊥y轴, ∴B的纵坐标是, ∵B在y=﹣上, ∴代入得:=﹣, 解得:x=﹣3a, ∴B的坐标是(﹣3a,), ∴PA=|﹣(﹣)|=,PB=|a﹣(﹣3a)|=4a, ∵PA⊥x轴,PB⊥y轴,x轴⊥y轴, ∴PA⊥PB, ∴△PAB的面积是:PA×PB=××4a=8. 故答案为:8. 点评: 本题考查了反比例函数和三角形面积公式的应用,关键是能根据P点的坐标得出A、B的坐标,本题具有一定的代表性,是一道比较好的题目. 18.(4分)(2014年山东东营)将自然数按以下规律排列: 表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为 (45,12) . 考点: 规律型:数字的变化类. 分析: 根据已知数据可得出第一列的奇数行的数的规律是第几行就是- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 山东省 东营 中考 数学试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文