【考试必备】湖北荆门市龙泉中学中考提前自主招生数学模拟试卷(6套)附解析.docx
《【考试必备】湖北荆门市龙泉中学中考提前自主招生数学模拟试卷(6套)附解析.docx》由会员分享,可在线阅读,更多相关《【考试必备】湖北荆门市龙泉中学中考提前自主招生数学模拟试卷(6套)附解析.docx(97页珍藏版)》请在咨信网上搜索。
中学自主招生数学试卷 一.选择题(每题3分,满分36分) 1.﹣的倒数是( ) A. B.﹣ C. D.﹣ 2.下列标志的图形中,是轴对称图形的是但不是中心对称图形的是( ) A. B. C. D. 3.下列运算中,结果是a6的式子是( ) A.a2•a3 B.a12﹣a6 C.(a3)3 D.(﹣a)6 4.下列调查方式,你认为最合适的是( ) A.了解北京市每天的流动人口数,采用抽样调查方式 B.旅客上飞机前的安检,采用抽样调查方式 C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式 D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式 5.若x=﹣4,则x的取值范围是( ) A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<6 6.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为( ) A.1或7 B.1或﹣7 C.﹣1或﹣7 D.±1或±7 7.无论a取何值时,下列分式一定有意义的是( ) A. B. C. D. 8.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( ) A.(﹣1,1) B.(﹣1,﹣2) C.(﹣1,2) D.(1,2) 9.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是( ) A.2 B.3 C.4 D.5 10.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是( ) A.S1<S2<S3 B.S2<S1<S3 C.S1<S3<S2 D.S3<S2<S1 11.如图,已知菱形ABCD中,∠A=40°,则∠ADB的度数是( ) A.40° B.50° C.60° D.70° 12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( ) A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0 二.填空题(满分18分,每小题3分) 13.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为 万元. 14.已知扇形的弧长为4π,圆心角为120°,则它的半径为 . 15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为 cm. 16.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为 . 17.若一次函数y=(1﹣2m)x+m的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1<y2,且与y轴相交于正半轴,则m的取值范围是 . 18.如图(1)是重庆中国三峡博物馆,又名重庆博物馆,中央地方共建国家级博物馆图(2)是侧面示意图.某校数学兴趣小组的同学要测量三峡博物馆的高GE.如(2),小杰身高为1.6米,小杰在A处测得博物馆楼顶G点的仰角为27°,前进12米到达B处测得博物馆楼顶G点的仰角为39°,斜坡BD的坡i=1:2.4,BD长度是13米,GE⊥DE,A、B、D、E、G在同一平面内,则博物馆高度GE约为 米.(结果精确到1米,参考数据tan27°≈0.50,tan39°≈0.80) 三.解答题 19.(6分)计算: (1)sin30°﹣cos45°+tan260° (2)2﹣2+﹣2sin60°+|﹣| 20.(6分)求不等式组的非负整数解. 21.(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG. (1)求证:△ABE≌△△CDF; (2)当线段AB与线段AC满足什么数量关系时,四边形EGCF是矩形?请说明理由. 22.(8分)今年西宁市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: (1)将上面的条形统计图补充完整; (2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选50米跑的人数有多少人? (3)甲、乙两名初三男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果. 23.(9分)随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买2张电影票的费用共为190元. (1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元? (2)2019年“元旦”当天,南坪上海城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张.“元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价0.5元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19800元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元? 24.(9分)如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD. (1)求证:DC=BC; (2)若AB=5,AC=4,求tan∠DCE的值. 25.(10分)若关于x的二次函数y=ax2+bx+c(a,b,c为常数)与x轴交于两个不同的点A(x1,0),B(x2,0)与y轴交于点C,其图象的顶点为点M,O是坐标原点. (1)若A(﹣2,0),B(4,0),C(0,3)求此二次函数的解析式并写出二次函数的对称轴; (2)如图1,若a>0,b>0,△ABC为直角三角形,△ABM是以AB=2的等边三角形,试确定a,b,c的值; (3)设m,n为正整数,且m≠2,a=1,t为任意常数,令b=3﹣mt,c=﹣3mt,如果对于一切实数t,AB≥|2t+n|始终成立,求m、n的值. 26.(10分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线解析式; (2)当点P运动到什么位置时,△PAB的面积最大? (3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由. 参考答案 一.选择题 1.解:﹣的倒数是:﹣. 故选:B. 2.解:A、不是轴对称图形,不是中心对称图形,不合题意; B、不是轴对称图形,不是中心对称图形,不合题意; C、不是轴对称图形,不是中心对称图形,不合题意; D、是轴对称图形,不是中心对称图形,符合题意. 故选:D. 3.解:A、a2•a3=a5,故本选项错误; B、不能进行计算,故本选项错误; C、(a3)3=a9,故本选项错误; D、(﹣a)6=a6,正确. 故选:D. 4.解:A、了解北京市每天的流动人口数,采用抽样调查方式,正确; B、旅客上飞机前的安检,采用全面调查方式,故错误; C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误; D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误; 故选:A. 5.解:∵36<37<49, ∴6<<7, ∴2<﹣4<3, 故x的取值范围是2<x<3. 故选:A. 6.解:∵|a|=3, ∴a=±3; ∵b2=16, ∴b=±4; ∵|a+b|≠a+b, ∴a+b<0, ∴a=3,b=﹣4或a=﹣3,b=﹣4, (1)a=3,b=﹣4时, a﹣b=3﹣(﹣4)=7; (2)a=﹣3,b=﹣4时, a﹣b=﹣3﹣(﹣4)=1; ∴代数式a﹣b的值为1或7. 故选:A. 7.解:当a=0时,a2=0,故A、B中分式无意义; 当a=﹣1时,a+1=0,故C中分式无意义; 无论a取何值时,a2+1≠0, 故选:D. 8.解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′, ∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1, ∴A′的坐标为(﹣1,1). 故选:A. 9.解:∵△ABO∽△CDO, ∴=, ∵BO=6,DO=3,CD=2, ∴=, 解得:AB=4. 故选:C. 10.解:作OD⊥BC交BC与点D, ∵∠COA=60°, ∴∠COB=120°,则∠COD=60°. ∴S扇形AOC=; S扇形BOC=. 在三角形OCD中,∠OCD=30°, ∴OD=,CD=,BC=R, ∴S△OBC=,S弓形==, >>, ∴S2<S1<S3. 故选:B. 11.解:∵四边形ABCD是菱形, ∴AB∥CD,∠ADB=∠CDB, ∴∠A+∠ADC=180°, ∵∠A=40°, ∴∠ADC=140°, ∴∠ADB=×140°=70°, 故选:D. 12.解:A、∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上, ∴a<0,c>0, ∵抛物线的对称轴是直线x=1, ∴﹣=1, ∴b=﹣2a>0, ∴abc<0,故本选项错误; B、∵图象与x轴有两个交点, ∴b2﹣4ac>0,故本选项错误; C、∵对称轴是直线x=1,与x轴一个交点是(﹣1,0), ∴与x轴另一个交点的坐标是(3,0), 把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误; D、∵当x=3时,y=0, ∵b=﹣2a, ∴y=ax2﹣2ax+c, 把x=4代入得:y=16a﹣8a+c=8a+c<0, 故选:D. 二.填空题 13.解:5 400 000=5.4×106万元. 故答案为5.4×106. 14.解:因为l=,l=4π,n=120, 所以可得:4π=, 解得:r=6, 故答案为:6 15.解:连结OB,如图, ∵∠BCD=22°30′, ∴∠BOD=2∠BCD=45°, ∵AB⊥CD, ∴BE=AE=AB=×2=,△BOE为等腰直角三角形, ∴OB=BE=2(cm). 故答案为:2. 16.解:∵平移后解析式是y=x﹣b, 代入y=得:x﹣b=, 即x2﹣bx=5, y=x﹣b与x轴交点B的坐标是(b,0), 设A的坐标是(x,y), ∴OA2﹣OB2 =x2+y2﹣b2 =x2+(x﹣b)2﹣b2 =2x2﹣2xb =2(x2﹣xb) =2×5=10, 故答案为:10. 17.解:∵当1<2时,y1<y2, ∴函数值y随x的增大而增大, ∴1﹣2m>0, 解得m< ∵函数的图象与y轴相交于正半轴, ∴m>0, 故m的取值范围是0<m< 故答案为0<m< 18.解:如图,延长CF交GE的延长线于H,延长GE交AB的延长线于J.设GE=xm. 在Rt△BDK中,∵BD=13,DK:BK=1:2.4, ∴DK=5,BK=12, ∵AC=BF=HJ=1.6,DK=EJ=5, ∴EH=5﹣1.6=3.4, ∵CH﹣FH=CF, ∴﹣=12, ∴﹣=12, ∴x=12.6≈13(m), 故答案为13. 三.解答题 19.解: (1)原式= = (2)原式= = 20.解:解不等式组得﹣2<x≤5, 所以原不等式组的非负整数解为0,1,2,3,4,5. 21.证明:(1)∵四边形ABCD是平行四边形, ∴AB=CD,AB∥CD,OB=OD,OA=OC, ∴∠ABE=∠CDF, ∵点E,F分别为OB,OD的中点, ∴BE=OB,DF=OD, ∴BE=DF, 在△ABE和△CDF中, ∴△ABE≌△CDF(SAS); (2)解:当AC=2AB时,四边形EGCF是矩形;理由如下: ∵AC=2OA,AC=2AB, ∴AB=OA, ∵E是OB的中点, ∴AG⊥OB, ∴∠OEG=90°, 同理:CF⊥OD, ∴AG∥CF, ∴EG∥CF, ∵EG=AE,OA=OC, ∴OE是△ACG的中位线, ∴OE∥CG, ∴EF∥CG, ∴四边形EGCF是平行四边形, ∵∠OEG=90°, ∴四边形EGCF是矩形. 22.解:(1)被调查的学生总人数:150÷15%=1000人, 选择B的人数:1000×(1﹣15%﹣20%﹣40%﹣5%)=1000×20%=200; 补全统计图如图所示; (2)5500×40%=2200人; (3)根据题意画出树状图如下: 所有等可能结果有9种: BB、BC、BD、CB、CC、CD、DB、DC、DD, 同时选择B和D的有2种可能,即BD和DB, P(同时选择B和D)=. 23.解:(1)设现场购买每张电影票为x元,网上购买每张电影票为y元. 依题意列二元一次方程组∵ 经检验解得 (2)设1月2日该电影院影票现场售价下调m元,那么会多卖出张电影票. 依题意列一元二次方程:(45﹣m)[(600+)×(1﹣)]=19800﹣25×(600+)(1﹣) 整理得:16m2﹣120m=0 m(16m﹣120)=0 解得m1=0(舍去) m2=7.5 答:(1)2018年在网上平台购票和现场购票的每张电影票的价格分别为25元和45元;(2)1月2日当天现场购票每张电影票的价格下调了7.5元. 24.(1)证明:连接OC. (1分) ∵OA=OC, ∴∠OAC=∠OCA. ∵CE是⊙O的切线, ∴∠OCE=90°. (2分) ∵AE⊥CE, ∴∠AEC=∠OCE=90°. ∴OC∥AE. ∴∠OCA=∠CAD. ∴∠CAD=∠BAC. (4分) ∴. ∴DC=BC. (5分) (2)解:∵AB是⊙O的直径, ∴∠ACB=90°. ∴BC==3. (6分) ∵∠CAE=∠BAC,∠AEC=∠ACB=90°, ∴△ACE∽△ABC. (7分) ∴. ∴,. (8分) ∵DC=BC=3, ∴.(9分) ∴tan∠DCE=. (10分) 25.解:(1)函数的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8), 则﹣8a=3,解得:a=﹣, 故抛物线的表达式为:y=﹣x2+x+3; (2)如图所示,△ABC为直角三角形,则∠ACB=90°, ∵△AMB是等边三角形,则点C是MB的中点, 则BC=MC=1,则BO=BC=,同理OC=, OA=2﹣=, 则点A、B、C的坐标分别为(﹣,0)、(,0),(0,﹣), 则函数的表达式为:y=a(x+)(x﹣)=a(x2+x﹣), 即﹣a=﹣,解得:a=, 则函数表达式为:y=x2+x﹣; (3)y=ax2+bx+c=x2+(3﹣mt)x﹣3mt, 则x1+x2=mt﹣3,x1x2=﹣3mt, AB=x2﹣x1==|mt+3|≥|2t+n|, 则m2t2+6mt+9≥4t2+4tn+n2, 即:(m2﹣4)t2+(6m﹣4n)t+(9﹣n2)≥0, 由题意得:m2﹣4>0,△=(6m﹣4n)2﹣4(m2﹣4)(9﹣n2)≤0, 解得:mn=6, 故:m=3,n=2或m=6,n=1. 26.解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0) ∴ 解得: ∴抛物线解析式为y=﹣x2﹣2x+3 (2)过点P作PH⊥x轴于点H,交AB于点F ∵x=0时,y=﹣x2﹣2x+3=3 ∴A(0,3) ∴直线AB解析式为y=x+3 ∵点P在线段AB上方抛物线上 ∴设P(t,﹣t2﹣2t+3)(﹣3<t<0) ∴F(t,t+3) ∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t ∴S△PAB=S△PAF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+ ∴点P运动到坐标为(﹣,),△PAB面积最大 (3)存在点P使△PDE为等腰直角三角形 设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3) ∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t ∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4 ∴对称轴为直线x=﹣1 ∵PE∥x轴交抛物线于点E ∴yE=yP,即点E、P关于对称轴对称 ∴=﹣1 ∴xE=﹣2﹣xP=﹣2﹣t ∴PE=|xE﹣xP|=|﹣2﹣2t| ∵△PDE为等腰直角三角形,∠DPE=90° ∴PD=PE ①当﹣3<t≤﹣1时,PE=﹣2﹣2t ∴﹣t2﹣3t=﹣2﹣2t 解得:t1=1(舍去),t2=﹣2 ∴P(﹣2,3) ②当﹣1<t<0时,PE=2+2t ∴﹣t2﹣3t=2+2t 解得:t1=,t2=(舍去) ∴P(,) 综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形. 中学自主招生数学试卷 一、选择题 1. 某车间2019年4月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2,则在这10天中该车间生产零件的次品数的 【 】 A.众数是4 B.中位数是1.5 C.平均数是2 D.方差是1.25 2. 如图所示,A,B,C均在⊙O上,若∠OAB=40O ,是优弧,则∠C的度数为 【 】 A. 40O B.45O C. 50O D. 55O 3. 若二次函数y=ax2+bx+c,当x取x1,x2(x1≠x2)时,函数值相等,则x取x1+x2时,函数值为 【 】 A. a+c B. a - c C. - c D. c 4. 已知在锐角△ABC中,∠A=550 ,AB﹥BC。则∠B的取值范围是 【 】 A.35o ﹤∠B﹤55o B. 40o ﹤∠B﹤55o C. 35o ﹤∠B﹤70o D. 70o ﹤∠B﹤90o 5. 正比例函数y1=k1x(k1>0)与反比例函数 (k2>0)部分图象如图所示, 则不等式k1x>的解集在数轴上表示正确的是 【 】 A. B. C. D. 6. 定义运算符号“*”的意义为a*b=a+bab(a、b均不为0).下面有两个结论: ①运算“*”满足交换律; ②运算“*”满足结合律 其中 【 】 A.只有①正确 B. 只有②正确 C. ①和②都正确 D. ①和②都不正确 7. 已知且,那么的值为 【 】 A. 2 B. 3 C. 4 D.5 8. 如图,点A的坐标为(0,1),点 B是 x轴正半轴上的一动点,以 AB为边作等腰直角 △ABC ,使ÐBAC=90O,设点 B的横坐标为 x,点 C的纵坐标为 y,能表示 y与x的函数关系的图象大致是( ) A B C D 9.已知△ABC是⊙O的内接正三角形,△ABC的面积为a,DEFG是半圆O的内接正方形,面积等于b,那么的值为 【 】 A. 2 B. C. D. 10. 横坐标、纵坐标都是整数的点叫做整点,函数的图象上整点的个数是【 】 A.2个 B.3个 C.4个 D.5个 二、填空题 11.如图,五边形是正五边形,若, 则 . 12.实数a、b、c满足a2-6b= -17,b2+8c= - 23,c2+2a=14,则a+b+c=_______ 13.把抛物线的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是,则b=_______,c=________ 14.对于正数x,规定,则 15.如图,在△ABC内的三个小三角形的面积分别 是10、16、20,若△ABC的面积S,则S=_____ 16.工人师傅在一个长为25cm、宽为18cm的矩形铁皮上剪去一个和三边都相切的⊙A后,在剩余部分的废料上再剪出一个最大的⊙B,则圆B的半径是___cm 三、解答题 17. (本题满分10分) 甲、乙两船从河中A地同时出发,匀速顺水下行至某一时刻,两船分别到达B地和C地.已知河中各处水流速度相同,且A地到B地的航程大于A地到C地的航程.两船在各自动力不变情况下,分别从B地和C地驶回A地所需的时间为t1和t2.试比较t1和t2的大小关系. 18. (本题满分10分) 关于三角函数有如下的公式: ① ② ③ 利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如: 根据上面的知识,你可以选择适当的公式解决下面实际问题: 如图所示,直升机在一建筑物CD上方A点处测得建筑物顶端D点的俯角a为60o,底端C点的俯角b为75 o,此时直升机与建筑物CD的水平距离BC为42米,求建筑物CD的高。 19. (本题满分12分) 某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表. 校本课程 频数 频率 A 36 0.45 B 0.25 C 16 b D 8 合计 a 1 (图1) (图2) 请您根据图表中提供的信息回答下列问题: (1)统计表中的a= ,b= ; (2)“D”对应扇形的圆心角为 度; (3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数; (4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率. 20.(本题满分12分) 阅读以下的材料: (1)如果两个正数a,b,即a>0,b>0,有下面的不等式: 当且仅当a=b时取到等号,我们把叫做正数的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。它在数学中有广泛的应用,是解决最值问题的有力工具。 (2)茎叶图是一个与直方图相类似的特殊工具,但又与直方图不同,茎叶图保留原始资料的资讯,直方图则失去原始资料的讯息。茎叶图的思路是将一组数中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。例如:将2、10、15、20、23、27这6个数据用茎叶图表示如右图。 下面举两个例子: 例1:已知x>0,求函数的最小值。 解:令a=x,,则有,得,当且仅当即x=2时,函数有最小值,最小值为2。 例2:已知a>0,b>0,且 解:因为a>0,b>0,所以 当且仅当 即 时取等号, 根据上面回答下列问题: ①已知x>1,则当x=______时,函数取到最小值,最小值为______; ②为保障中考期间的食品安全,某县城对各考点进行食品检查,如图所示是某食品中微量元素含量数据的茎叶图,已知该组数据的平均数为11.5,若m>0,n>0且m+n=a+b求的最小值; ③已知x>0,则自变量x取何值时,函数 取到最大值, 最大值为多少? 21.(本题满分12分) 如此巧合! 下面是小刘对一道题目的解答. 题目:如图,的内切圆与斜边相切于点, ,,求的面积. 解:设的内切圆分别与、相切于点、,的长为. 根据切线长定理,得,,. 根据勾股定理,得.整理,得. 所以. 小刘发现恰好就是,即的面积等于与的积.这仅仅是巧合吗? 请你帮他完成下面的探索. 已知:的内切圆与相切于点,,. 可以一般化吗? (1)若,求证:的面积等于. 倒过来思考呢? (2)若,求证. 改变一下条件…… (3)若,用 中学自主招生数学试卷 一、选择题(本大题共12小题,共48.0分) 1. 2的相反数是( ) A. -2 B. -12 C. 12 D. 2 2. 人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:x-甲=x-乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是( ) A. 甲班 B. 乙班 C. 两班成绩一样稳定 D. 无法确定 3. 如图,DE是△ABC的中位线,则△ADE与△ABC的面积之比是( ) A. 1:1 B. 1:2 C. 1:3 D. 1:4 4. 关于方程x2+2x-4=0的根的情况,下列结论错误的是( ) A. 有两个不相等的实数根 B. 两实数根的和为-2 C. 两实数根的差为25 D. 两实数根的积为-4 5. 函数y=x+4中自变量x的取值范围是( ) A. x>-4 B. x≥-4 C. x≤-4 D. x≠-4 6. 下列计算正确的是( ) A. a2⋅a3=a6 B. a3÷a=a3 C. (a2)3=a6 D. (3a2)4=9a4 7. 在下列图形中,既是中心对称图形又是轴对称图形的是( ) A. 等腰三角形 B. 圆 C. 梯形 D. 平行四边形 8. 如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是( ) A. x>2 B. x<2 C. x>-1 D. x<-1 9. 若正六边形外接圆的半径为4,则它的边长为( ) A. 2 B. 43 C. 4 D. 23 10. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修后,因怕耽误上课,他比修车前加快了骑车速度继续匀速行驶,正面是行驶路程S(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是( ) A. B. C. D. 11. 已知方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,k的取值是( ) A. -3或1 B. -3 C. 1 D. 3 12. 某超市(商场)失窃,大量的商品在夜间被罪犯用汽车运走.三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在甲、乙、丙三人之外;(2)丙作案时总得有甲作从犯;(3)乙不会开车.在此案中,能肯定的作案对象是( ) A. 嫌疑犯乙 B. 嫌疑犯丙 C. 嫌疑犯甲 D. 嫌疑犯甲和丙 二、填空题(本大题共6小题,共24.0分) 13. 在0,3,-2,3这四个数中,最大的数是______. 14. 分解因式:-4xy2+x=______. 15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西______度. 16. 平移抛物线y=x2+2x-8,使它经过原点,写出平移后抛物线的一个解析式______. 17. 如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为______m. 18. 已知|a+1|=-(b-2019)2,则ab=______. 三、计算题(本大题共1小题,共8.0分) 19. 解方程:6x2-1-3x-1=1 四、解答题(本大题共7小题,共70.0分) 20. 某中学部分同学参加全国初中数学竞赛,取得了优异的成绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了“频率分布直方图”(如图).请回答: (1)该中学参加本次数学竞赛的有多少名同学? (2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少? (3)这次竞赛成绩的中位数落在哪个分数段内? (4)图中还提供了其它信息,例如该中学没有获得满分的同学等等,请再写出两条信息. 21. 有一个未知圆心的圆形工件.现只允许用一块直角三角板(注:不允许用三角板上的刻度)画出该工件表面上的一根直径并定出圆心.要求在图上保留画图痕迹,写出画法. 22. 已知正比例函数y=kx与反比例函数y=3x的图象都过A(m,1)点,求出正比例函数解析式及另一个交点的坐标. 23. 如图,AB是⊙O的直径,弦BC=OB,点D是AC上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G. (1)求∠DGE的度数; (2)若CFOF=12,求BFGF的值; (3)记△CFB,△DGO的面积分别为S1,S2,若CFOF=k,求S1S2的值.(用含k的式子表示) 24. 超市里,某商户先后两次购进若干千克的黄瓜,第一次用了300元,第二次用了900元,但第二次的进货单价比第次的要高1.5元,而所购的黄瓜数量是第一次的2倍. (1)问该商户两次一共购进了多少千克黄瓜? (2)当商户按每千克6元的价格卖掉了13时,商户想尽快卖掉这些黄瓜,于是商户决定将剩余的黄瓜打折销售,请你帮忙算算,剩余的黄瓜至少打几折才能使两次所进的黄瓜总盈利不低于360元? 25. 抛物线y=ax2-12x+54经过点E(5,5),其顶点为C点. (1)求抛物线的解析式,并直接写出C点坐标. (2)将直线y=12x沿y轴向上平移b个单位长度交抛物线于A、B两点.若∠ACB=90°,求b的值. (3)是否存在点D(1,a),使抛物线上任意一点P到x轴的距离等于P点到点D的距离?若存在,请求点D的坐标;若不存在,请说明理由. 26. 材料一:一个大于1的正整数,若被N除余1,被(N-1)除余1,被(N-2)除余1…,被3除余1,被2除余1,那么称这个正整数为“明N礼”数(N取最大),例如:73(被5除余3)被4除余1,被3除余1,被2除余1,那么73为“明四礼”数. 材料二:设N,(N-1),(N-2),…3,2的最小公倍数为k,那么“明N礼”数可以表示为kn+1,(n为正整数),例如:6,5,4,3,2的最小公倍数为60,那么“明六礼”数可以表示为60n+1.(n为正整数) (1)17______“明三礼”数(填“是”或“不是”);721是“明______礼”数; (2)求出最小的三位“明三礼”数; (3)一个“明三礼”数与“明四礼”数的和为32,求出这两个数. 答案和解析 1.【答案】A 【解析】 解:2的相反数是-2. 故选:A. 利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案. 此题主要考查了相反数的概念,正确把握定义是解题关键. 2.【答案】B 【解析】 解:∵s甲2>s乙2, ∴成绩较为稳定的班级是乙班. 故选:B. 根据方差的意义判断.方差越小,波动越小,越稳定. 本题考查方差的意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 3.【答案】D 【解析】 解:∵DE是△ABC的中位线, ∴△ADE∽△ABC, 相似比为,面积比为. 故选:D. 由DE是△ABC的中位线,可证得DE∥BC,进而推得两个三角形相似,然后利用相似三角形的性质解答即可. 三角形的三条中位线把原三角形分成可重合的4个小三角形,因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的. 4.【答案】C 【解析】 解:A、△=22-4×1×(-4)=4+16=20>0,则该方程有两个不相等的实数根.故本选项不符合题意. B、设方程的两个为α,β,则α+β=-2,故本选项不符合题意. C、设方程的两个为α,β,则α-β=±==±2,故本选项符合题意. D、设方程的两个为α,β,则α•β=-4,故本选项不符合题意. 故选:C. 根据根与系数的关系和根的判别式进行解答. 此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法. 5.【答案】B 【解析】 解:由题意,得 x+4≥0, 解得x≥-4, 故选:B. 根据被开方数是非负数,可得答案. 本题考查了函数自变量的取值范围,利用被开方数是非负数得出不等式是解题关键. 6.【答案】C 【解析】 解:A.a2•a3=a5,故本选项不合题意; B.a3÷a=a2,故本选项不合题意; C.(a2)3=a6故本选项符合题意; D.(3a2)4=81a8故本选项不合题意. 故选:C. 分别根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则以及积的乘方法则逐一判断即可. 本题主要考查了幂的运算,熟练掌握幂的运算性质是解答本题的关键. 7.【答案】B 【解析- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考试必备 考试 必备 湖北 荆门市 龙泉 中学 中考 提前 自主 招生 数学模拟 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文