备战中考数学平行四边形-经典压轴题含详细答案.doc
《备战中考数学平行四边形-经典压轴题含详细答案.doc》由会员分享,可在线阅读,更多相关《备战中考数学平行四边形-经典压轴题含详细答案.doc(27页珍藏版)》请在咨信网上搜索。
备战中考数学平行四边形-经典压轴题含详细答案 一、平行四边形 1.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H. (1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明; (2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG; (3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数. 【答案】(1)①证明见解析;②AG⊥BE.理由见解析;(2)证明见解析;(3)∠BHO=45°. 【解析】 试题分析:(1)①根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;②根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE; (2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立; (3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,所以HO平分∠BHG,即∠BHO=45°. 试题解析:(1)①∵四边形ABCD为正方形, ∴DA=DC,∠ADB=∠CDB=45°, 在△ADG和△CDG中 , ∴△ADG≌△CDG(SAS), ∴∠DAG=∠DCG; ②AG⊥BE.理由如下: ∵四边形ABCD为正方形, ∴AB=DC,∠BAD=∠CDA=90°, 在△ABE和△DCF中 , ∴△ABE≌△DCF(SAS), ∴∠ABE=∠DCF, ∵∠DAG=∠DCG, ∴∠DAG=∠ABE, ∵∠DAG+∠BAG=90°, ∴∠ABE+∠BAG=90°, ∴∠AHB=90°, ∴AG⊥BE; (2)由(1)可知AG⊥BE. 如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形. ∴∠MON=90°, 又∵OA⊥OB, ∴∠AON=∠BOM. ∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°, ∴∠OAN=∠OBM. 在△AON与△BOM中, ∴△AON≌△BOM(AAS). ∴OM=ON, ∴矩形OMHN为正方形, ∴HO平分∠BHG. (3)将图形补充完整,如答图2示,∠BHO=45°. 与(1)同理,可以证明AG⊥BE. 过点O作OM⊥BE于点M,ON⊥AG于点N, 与(2)同理,可以证明△AON≌△BOM, 可得OMHN为正方形,所以HO平分∠BHG, ∴∠BHO=45°. 考点:1、四边形综合题;2、全等三角形的判定与性质;3、正方形的性质 2.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是 ; 结论2:DM、MN的位置关系是 ; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立. 考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质. 3.如图,在等腰中,,点E在AC上且不与点A、C重合,在的外部作等腰,使,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF. 请直接写出线段AF,AE的数量关系; 将绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AF,AE的数量关系,并证明你的结论; 若,,在图的基础上将绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度. 【答案】(1)证明见解析;(2)①②或. 【解析】 【分析】 如图中,结论:,只要证明是等腰直角三角形即可; 如图中,结论:,连接EF,DF交BC于K,先证明≌再证明是等腰直角三角形即可; 分两种情形a、如图中,当时,四边形ABFD是菱形、如图中当时,四边形ABFD是菱形分别求解即可. 【详解】 如图中,结论:. 理由:四边形ABFD是平行四边形, , , , , , , 是等腰直角三角形, . 故答案为. 如图中,结论:. 理由:连接EF,DF交BC于K. 四边形ABFD是平行四边形, , , ,, , , , , , , 在和中, , ≌, ,, , 是等腰直角三角形, . 如图中,当时,四边形ABFD是菱形,设AE交CD于H,易知,,, 如图中当时,四边形ABFD是菱形,易知, 综上所述,满足条件的AE的长为或. 【点睛】 本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型. 4.如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB的中点.已知AD=1,AB=2. (1)设BC=x,CD=y,求y关于x的函数关系式,并写出定义域; (2)当∠B=70°时,求∠AEC的度数; (3)当△ACE为直角三角形时,求边BC的长. 【答案】(1);(2)∠AEC=105°;(3)边BC的长为2或. 【解析】 试题分析:(1)过A作AH⊥BC于H,得到四边形ADCH为矩形.在△BAH中,由勾股定理即可得出结论. (2)取CD中点T,连接TE,则TE是梯形中位线,得ET∥AD,ET⊥CD,∠AET=∠B=70°. 又AD=AE=1,得到∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,即可得到结论. (3)分两种情况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°, 解△ABH即可得到结论. ②当∠CAE=90°时,易知△CDA∽△BCA,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A作AH⊥BC于H.由∠D=∠BCD=90°,得四边形ADCH为矩形. 在△BAH中,AB=2,∠BHA=90°,AH=y,HB=,∴, 则 (2)取CD中点T,联结TE,则TE是梯形中位线,得ET∥AD,ET⊥CD,∴∠AET=∠B=70°. 又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,∴∠AEC=70°+35°=105°. (3)分两种情况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°, 则在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2. ②当∠CAE=90°时,易知△CDA∽△BCA,又, 则(舍负) 易知∠ACE<90°,所以边BC的长为. 综上所述:边BC的长为2或. 点睛:本题是四边形综合题.考查了梯形中位线,相似三角形的判定与性质.解题的关键是掌握梯形中常见的辅助线作法. 5.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F. (1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积. 【答案】(1)见解析;(2)S平行四边形ADBC=. 【解析】 【分析】 (1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE =∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,则四边形BCFD是平行四边形. (2)在Rt△ABC中,求出BC,AC即可解决问题; 【详解】 解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形; (2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=,∴S平行四边形BCFD=3×=,S△ACF=×3×=,S平行四边形ADBC=. 【点睛】 本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 6.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P. (1)连结CG,请判断四边形DBCG的形状,并说明理由; (2)若AE=BD,求∠EDF的度数. 【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°. 【解析】 【分析】 (1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可; (2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可. 【详解】 解:(1)四边形BCGD是矩形,理由如下, ∵四边形ABCD是平行四边形, ∴BC∥AD,即BC∥DG, 由折叠可知,BC=DG, ∴四边形BCGD是平行四边形, ∵AD⊥BD, ∴∠CBD=90°, ∴四边形BCGD是矩形; (2)由折叠可知:EF垂直平分BD, ∴BD⊥EF,DP=BP, ∵AD⊥BD, ∴EF∥AD∥BC, ∴ ∴AE=BE, ∴DE是Rt△ADB斜边上的中线, ∴DE=AE=BE, ∵AE=BD, ∴DE=BD=BE, ∴△DBE是等边三角形, ∴∠EDB=∠DBE=60°, ∵AB∥DC, ∴∠DBC=∠DBE=60°, ∴∠EDF=120°. 【点睛】 本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度 7.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC. (1)试猜想AE与GC有怎样的关系(直接写出结论即可); (2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由. (3)在(2)中,若E是BC的中点,且BC=2,则C,F两点间的距离为 . 【答案】(1) AE=CG,AE⊥GC;(2)成立,证明见解析; (3) . 【解析】 【分析】 (1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC. (2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证. (3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题. 【详解】 (1)AE=CG,AE⊥GC; 证明:延长GC交AE于点H, 在正方形ABCD与正方形DEFG中, AD=DC,∠ADE=∠CDG=90°, DE=DG, ∴△ADE≌△CDG(SAS), ∴AE,CG,∠1=∠2 ∵∠2+∠3=90°, ∴∠1+∠3=90°, ∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°, ∴AE⊥GC. (2)答:成立; 证明:延长AE和GC相交于点H, 在正方形ABCD和正方形DEFG中, AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°, ∴∠1=∠2=90°﹣∠3; ∴△ADE≌△CDG(SAS), ∴AE=CG,∠5=∠4; 又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°, ∴∠6=∠7, 又∵∠6+∠AEB=90°,∠AEB=∠CEH, ∴∠CEH+∠7=90°, ∴∠EHC=90°, ∴AE⊥GC. (3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM. ∵BE=CE=1,AB=CD=2, ∴AE=DE=CG═DG=FG=, ∵DE=DG,∠DCE=∠GND,∠EDC=∠DGN, ∴△DCE≌△GND(AAS), ∴GCD=2, ∵S△DCG=•CD•NG=•DG•CM, ∴2×2=•CM, ∴CM=GH=, ∴MG=CH==, ∴FH=FG﹣FG=, ∴CF===. 故答案为. 【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题. 8.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF. 证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明) (变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由; 请运用上述解答中所积累的经验和方法完成下列两题: (结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=16,CF=6,求PG+PH的值. (迁移拓展)(3)在直角坐标系中,直线l1:y=-x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标. 【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10) 【解析】 【变式探究】 连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得; 【结论运用】 过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可; 【迁移拓展】 分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标. 【详解】 变式探究:连接AP,如图3: ∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP, ∴AB•CF=AC•PE﹣ AB•PD. ∵AB=AC, ∴CF=PD﹣PE; 结论运用:过点E作EQ⊥BC,垂足为Q,如图④, ∵四边形ABCD是长方形, ∴AD=BC,∠C=∠ADC=90°. ∵AD=16,CF=6, ∴BF=BC﹣CF=AD﹣CF=5, 由折叠可得:DF=BF,∠BEF=∠DEF. ∴DF=5. ∵∠C=90°, ∴DC==8. ∵EQ⊥BC,∠C=∠ADC=90°, ∴∠EQC=90°=∠C=∠ADC. ∴四边形EQCD是长方形. ∴EQ=DC=4. ∵AD∥BC, ∴∠DEF=∠EFB. ∵∠BEF=∠DEF, ∴∠BEF=∠EFB. ∴BE=BF, 由问题情境中的结论可得:PG+PH=EQ. ∴PG+PH=8. ∴PG+PH的值为8; 迁移拓展:如图, 由题意得:A(0,8),B(6,0),C(﹣4,0) ∴AB==10,BC=10. ∴AB=BC, (1)由结论得:P1D1+P1E1=OA=8 ∵P1D1=1=2, ∴P1E1=6 即点P1的纵坐标为6 又点P1在直线l2上, ∴y=2x+8=6, ∴x=﹣1, 即点P1的坐标为(﹣1,6); (2)由结论得:P2E2﹣P2D2=OA=8 ∵P2D2=2, ∴P2E2=10 即点P1的纵坐标为10 又点P1在直线l2上, ∴y=2x+8=10, ∴x=1, 即点P1的坐标为(1,10) 【点睛】 本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键. 9.正方形ABCD,点E在边BC上,点F在对角线AC上,连AE. (1)如图1,连EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周长; (2)如图2,若AF=AB,过点F作FG⊥AC交CD于G,点H在线段FG上(不与端点重合),连AH.若∠EAH=45°, 求证:EC=HG+FC. 【答案】(1);(2)证明见解析 【解析】 【分析】 (1)由正方形性质得出AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,得出AC=AB=4,求出AF=3,CF=AC﹣AF=,求出△CEF是等腰直角三角形,得出EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周长; (2)延长GF交BC于M,连接AG,则△CGM和△CFG是等腰直角三角形,得出CM=CG,CG=CF,证出BM=DG,证明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再证明△ABE≌△AFH,得出BE=FH,即可得出结论. 【详解】 (1)∵四边形ABCD是正方形, ∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°, ∴AC=AB=4, ∵4AF=3AC=12, ∴AF=3, ∴CF=AC﹣AF=, ∵EF⊥AC, ∴△CEF是等腰直角三角形, ∴EF=CF=,CE=CF=2, 在Rt△AEF中,由勾股定理得:AE=, ∴△AEF的周长=AE+EF+AF=; (2)证明:延长GF交BC于M,连接AG,如图2所示: 则△CGM和△CFG是等腰直角三角形, ∴CM=CG,CG=CF, ∴BM=DG, ∵AF=AB, ∴AF=AD, 在Rt△AFG和Rt△ADG中, , ∴Rt△AFG≌Rt△ADG(HL), ∴FG=DG,∴BM=FG, ∵∠BAC=∠EAH=45°, ∴∠BAE=∠FAH, ∵FG⊥AC, ∴∠AFH=90°, 在△ABE和△AFH中, , ∴△ABE≌△AFH(ASA), ∴BE=FH, ∵BM=BE+EM,FG=FH+HG, ∴EM=HG, ∵EC=EM+CM,CM=CG=CF, ∴EC=HG+FC. 【点睛】 本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键. 10.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E. (1)求证:△AED≌△CEB′; (2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明. 【答案】(1)见解析(2)见解析 【解析】 【分析】 (1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得; (2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形. 【详解】 证明:(1)∵四边形ABCD是平行四边形 ∴AD=BC,CD∥AB,∠B=∠D ∵平行四边形ABCD沿其对角线AC折叠 ∴BC=B'C,∠B=∠B' ∴∠D=∠B',AD=B'C且∠DEA=∠B'EC ∴△ADE≌△B'EC (2)四边形AECF是菱形 ∵△ADE≌△B'EC ∴AE=CE ∵AE=CE,EF⊥AC ∴EF垂直平分AC,∠AEF=∠CEF ∴AF=CF ∵CD∥AB ∴∠CEF=∠EFA且∠AEF=∠CEF ∴∠AEF=∠EFA ∴AF=AE ∴AF=AE=CE=CF ∴四边形AECF是菱形 【点睛】 本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键. 11.如图,AB为⊙O的直径,点E在⊙O上,过点E的切线与AB的延长线交于点D,连接BE,过点O作BE的平行线,交⊙O于点F,交切线于点C,连接AC (1)求证:AC是⊙O的切线; (2)连接EF,当∠D= °时,四边形FOBE是菱形. 【答案】(1)见解析;(2)30. 【解析】 【分析】 (1)由等角的转换证明出,根据圆的位置关系证得AC是⊙O的切线. (2)根据四边形FOBE是菱形,得到OF=OB=BF=EF,得证为等边三角形,而得出,根据三角形内角和即可求出答案. 【详解】 (1)证明:∵CD与⊙O相切于点E, ∴, ∴, 又∵, ∴,∠OBE=∠COA ∵OE=OB, ∴, ∴, 又∵OC=OC,OA=OE, ∴, ∴, 又∵AB为⊙O的直径, ∴AC为⊙O的切线; (2)解:∵四边形FOBE是菱形, ∴OF=OB=BF=EF, ∴OE=OB=BE, ∴为等边三角形, ∴, 而, ∴. 故答案为30. 【点睛】 本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键. 12.如图,点E是正方形ABCD的边AB上一点,连结CE,过顶点C作CF⊥CE,交AD延长线于F.求证:BE=DF. 【答案】证明见解析. 【解析】 分析:根据正方形的性质,证出BC=CD,∠B=∠CDF,∠BCD=90°,再由垂直的性质得到∠BCE=∠DCF,然后根据“ASA”证明△BCE≌△BCE即可得到BE=DF 详解:证明:∵CF⊥CE, ∴∠ECF=90°, 又∵∠BCG=90°, ∴∠BCE+∠ECD =∠DCF+∠ECD ∴∠BCE=∠DCF, 在△BCE与△DCF中, ∵∠BCE=∠DCF,BC=CD,∠CDF=∠EBC, ∴△BCE≌△BCE(ASA), ∴BE=DF. 点睛:本题考查的是正方形的性质,熟知正方形的性质及全等三角形的判定与性质是解答此题的关键. 13.如图,P是边长为1的正方形ABCD对角线BD上一动点(P与B、D不重合),∠APE=90°,且点E在BC边上,AE交BD于点F. (1)求证:①△PAB≌△PCB;②PE=PC; (2)在点P的运动过程中,的值是否改变?若不变,求出它的值;若改变,请说明理由; (3)设DP=x,当x为何值时,AE∥PC,并判断此时四边形PAFC的形状. 【答案】(1)见解析; (2); (3)x=﹣1;四边形PAFC是菱形. 【解析】 试题分析:(1)根据四边形ABCD是正方形,得出AB=BC,∠ABP=∠CBP°,再根据PB=PB,即可证出△PAB≌△PCB, ②根据∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB,从而证出PE=PC; (2)根据PA=PC,PE=PC,得出PA=PE,再根据∠APE=90°,得出∠PAE=∠PEA=45°,即可求出; (3)先求出∠CPE=∠PEA=45°,从而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,从而证出BP=BC=1,x=﹣1,再根据AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB得出∠BPA=∠BPC=67.5°,PA=PC,从而证出AF=AP=PC,得出答案. 试题解析:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°. ∵PB=PB,∴△PAB≌△PCB (SAS). ②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°, 又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC. (2)在点P的运动过程中,的值不改变. 由△PAB≌△PCB可知,PA=PC. ∵PE=PC, ∴PA=PE, 又∵∠APE=90°, ∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=. (3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)=67.5°. 在△PBC中,∠BPC=(180°﹣∠CBP﹣∠PCE)=(180°﹣45°﹣67.5°)=67.5°. ∴∠BPC=∠PCE=67.5°,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC, ∴∠AFP=∠BPC=67.5°,由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC, ∴∠AFP=∠BPA,∴AF=AP=PC,∴四边形PAFC是菱形. 考点:四边形综合题. 14.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH. (1)求证:∠APB=∠BPH; (2)当点P在边AD上移动时,求证:△PDH的周长是定值; (3)当BE+CF的长取最小值时,求AP的长. 【答案】(1)证明见解析.(2)证明见解析.(3)2. 【解析】 试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案; (2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8; (3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值. 试题解析:(1)解:如图1, ∵PE=BE, ∴∠EBP=∠EPB. 又∵∠EPH=∠EBC=90°, ∴∠EPH-∠EPB=∠EBC-∠EBP. 即∠PBC=∠BPH. 又∵AD∥BC, ∴∠APB=∠PBC. ∴∠APB=∠BPH. (2)证明:如图2,过B作BQ⊥PH,垂足为Q. 由(1)知∠APB=∠BPH, 又∵∠A=∠BQP=90°,BP=BP, 在△ABP和△QBP中, , ∴△ABP≌△QBP(AAS), ∴AP=QP,AB=BQ, 又∵AB=BC, ∴BC=BQ. 又∠C=∠BQH=90°,BH=BH, 在△BCH和△BQH中, , ∴△BCH≌△BQH(SAS), ∴CH=QH. ∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8. ∴△PDH的周长是定值. (3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB. 又∵EF为折痕, ∴EF⊥BP. ∴∠EFM+∠MEF=∠ABP+∠BEF=90°, ∴∠EFM=∠ABP. 又∵∠A=∠EMF=90°, 在△EFM和△BPA中, , ∴△EFM≌△BPA(AAS). ∴EM=AP. 设AP=x 在Rt△APE中,(4-BE)2+x2=BE2. 解得BE=2+, ∴CF=BE-EM=2+-x, ∴BE+CF=-x+4=(x-2)2+3. 当x=2时,BE+CF取最小值, ∴AP=2. 考点:几何变换综合题. 15.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短. 小明应用这个结论进行了下列探索活动和问题解决. 问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造 □APBQ,求对角线PQ的最小值及PQ最小时的值. (1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为 ,当PQ最小时 = _____ __; (2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n 为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值; 问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3. (1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值. (2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值. 【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为.. 【解析】 试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=, 由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当 AB时,的长最小,PQ的最小值为.. 试题解析:问题1:(1)3,; (2)过点C作CD⊥AB于点D. 由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4, BC=3,所以AB=5.所以CD=.所以PQ=. 在Rt△ACD中AC=4,CD=,所以AD=. 因为AE=nPA,所以PE==CQ=PD=AD-AP=. 所以AP=.所以=. 问题2: (1)如图2,设对角线与相交于点. 所以G是DC的中点, 作QHBC,交BC的延长线于H, 因为AD//BC,所以. 所以. 又,所以Rt≌Rt.所以AD=HC,QH=AP. 由图知,当 AB时,的长最小,即=CH=4. 易得四边形BPQH为矩形,所以QH=BP=AP.所以. (若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求) (2)PQ的最小值为.. 考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战 中考 数学 平行四边形 经典 压轴 详细 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文