2020-2021中考数学压轴题之二次函数(中考题型整理-突破提升)附详细答案.doc
《2020-2021中考数学压轴题之二次函数(中考题型整理-突破提升)附详细答案.doc》由会员分享,可在线阅读,更多相关《2020-2021中考数学压轴题之二次函数(中考题型整理-突破提升)附详细答案.doc(33页珍藏版)》请在咨信网上搜索。
1、2020-2021中考数学压轴题之二次函数(中考题型整理,突破提升)附详细答案一、二次函数1已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PDy轴交直线AC于点D(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MAMC|最大?若存在请求出点M的坐标,若不存在请说明理由【答案】(1)y=x24x+3;(2);(3)点P(1,0)或(2,1);(4)
2、M(2,3)【解析】试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)APD是直角时,点P与点B重合,求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,PAD是直角,分别写出点P的坐标即可;(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MAMC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可试题解析:解:(1)抛物线y=x2+bx+c
3、过点A(3,0),B(1,0),解得,抛物线解析式为y=x24x+3;(2)令x=0,则y=3,点C(0,3),则直线AC的解析式为y=x+3,设点P(x,x24x+3)PDy轴,点D(x,x+3),PD=(x+3)(x24x+3)=x2+3x=(x)2+a=10,当x=时,线段PD的长度有最大值;(3)APD是直角时,点P与点B重合,此时,点P(1,0),y=x24x+3=(x2)21,抛物线的顶点坐标为(2,1)A(3,0),点P为在抛物线顶点时,PAD=45+45=90,此时,点P(2,1)综上所述:点P(1,0)或(2,1)时,APD能构成直角三角形;(4)由抛物线的对称性,对称轴垂直
4、平分AB,MA=MB,由三角形的三边关系,|MAMC|BC,当M、B、C三点共线时,|MAMC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k0),则,解得:,直线BC的解析式为y=3x+3抛物线y=x24x+3的对称轴为直线x=2,当x=2时,y=32+3=3,点M(2,3),即,抛物线对称轴上存在点M(2,3),使|MAMC|最大点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M的
5、位置是解题的关键2如图,已知抛物线yx2+bx+c与一直线相交于A(1,0)、C(2,3)两点,与y轴交于点N,其顶点为D(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使ANM的周长最小若存在,请求出M点的坐标和ANM周长的最小值;若不存在,请说明理由【答案】(1)yx22x+3;yx+1;(2)当x时,APC的面积取最大值,最大值为,此时点P的坐标为(,);(3)在对称轴上存在一点M(1,2),使ANM的周长最小,ANM周长的最小值为3【解析】【分析】(1)根据点A,C的坐标,利用
6、待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PEy轴交x轴于点E,交直线AC于点F,过点C作CQy轴交x轴于点Q,设点P的坐标为(x,x22x+3)(2x1),则点E的坐标为(x,0),点F的坐标为(x,x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出SAPCx2x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时ANM周长取最小值,再利用
7、一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出ANM周长的最小值即可得出结论【详解】(1)将A(1,0),C(2,3)代入yx2+bx+c,得:,解得:,抛物线的函数关系式为yx22x+3;设直线AC的函数关系式为ymx+n(m0),将A(1,0),C(2,3)代入ymx+n,得:,解得:,直线AC的函数关系式为yx+1(2)过点P作PEy轴交x轴于点E,交直线AC于点F,过点C作CQy轴交x轴于点Q,如图1所示设点P的坐标为(x,x22x+3)(2x1),则点E的坐标为(x,0),点F的坐标为(x,x+1),PEx22x+3,EFx+1,EFPEE
8、Fx22x+3(x+1)x2x+2点C的坐标为(2,3),点Q的坐标为(2,0),AQ1(2)3,SAPCAQPFx2x+3(x+)2+ 0,当x时,APC的面积取最大值,最大值为,此时点P的坐标为(, )(3)当x0时,yx22x+33,点N的坐标为(0,3)yx22x+3(x+1)2+4,抛物线的对称轴为直线x1点C的坐标为(2,3),点C,N关于抛物线的对称轴对称令直线AC与抛物线的对称轴的交点为点M,如图2所示点C,N关于抛物线的对称轴对称,MNCM,AM+MNAM+MCAC,此时ANM周长取最小值当x1时,yx+12,此时点M的坐标为(1,2)点A的坐标为(1,0),点C的坐标为(2
9、,3),点N的坐标为(0,3),AC 3,AN ,CANMAM+MN+ANAC+AN3+在对称轴上存在一点M(1,2),使ANM的周长最小,ANM周长的最小值为3+【点睛】本题考查待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出SAPCx2x+3的最值;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置3如图,已知抛物线y=x2bxc与x轴交于A、B两点(A点在B点左侧
10、),与y轴交于点C(0,3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限当线段PQ=AB时,求tanCED的值;当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标【答案】(1)抛物线的函数表达式为y=x22x3(2)直线BC的函数表达式为y=x3(3)P1(1,2),P2(1,)【解析】【分析】已知C点的坐标,即知道OC的长,可在直角三角形BOC中根据BCO的正切值求出OB的长,即可得出B点的坐标已知了AOC和BOC的
11、面积比,由于两三角形的高相等,因此面积比就是AO与OB的比由此可求出OA的长,也就求出了A点的坐标,然后根据A、B、C三点的坐标即可用待定系数法求出抛物线的解析式【详解】(1)抛物线的对称轴为直线x=1,1b=-2抛物线与y轴交于点C(0,-3),c=-3,抛物线的函数表达式为y=x2-2x-3;(2)抛物线与x轴交于A、B两点,当y=0时,x2-2x-3=0x1=-1,x2=3A点在B点左侧,A(-1,0),B(3,0)设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m,则,直线BC的函数表达式为y=x-3;(3)AB=4,PQ=AB,PQ=3PQy轴PQx轴,则由抛物线的对
12、称性可得PM=,对称轴是直线x=1,P到y轴的距离是,点P的横坐标为,P(,)F(0,),FC=3-OF=3-=PQ垂直平分CE于点F,CE=2FC=点D在直线BC上,当x=1时,y=-2,则D(1,-2),过点D作DGCE于点G,DG=1,CG=1,GE=CE-CG=-1=在RtEGD中,tanCED=P1(1-,-2),P2(1-,-)设OE=a,则GE=2-a,当CE为斜边时,则DG2=CGGE,即1=(OC-OG)(2-a),1=1(2-a),a=1,CE=2,OF=OE+EF=2F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:x=1+或1-点P在第三象
13、限P1(1-,-2),当CD为斜边时,DECE,OE=2,CE=1,OF=2.5,P和F的纵坐标为:-,把y=-,代入抛物线的函数表达式为y=x2-2x-3得:x=1-,或1+,点P在第三象限P2(1-,-)综上所述:满足条件为P1(1-,-2),P2(1-,-)【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法在求有关动点问题时要注意分析题意分情况讨论结果4如图,在平面直角坐标系中,抛物线y=ax2+bx3(a0)与x轴交于点A(2,0)、B(4,0)两点,与y轴交于点C(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向
14、B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当PBQ存在时,求运动多少秒使PBQ的面积最大,最大面积是多少?(3)当PBQ的面积最大时,在BC下方的抛物线上存在点K,使SCBK:SPBQ=5:2,求K点坐标【答案】(1)y=x2x3(2)运动1秒使PBQ的面积最大,最大面积是(3)K1(1,),K2(3,)【解析】【详解】试题分析:(1)把点A、B的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值;(2)设运动时间为t秒利用三角形的面积公式列出SPBQ与t的函数关系式SPBQ=(t1)2+
15、利用二次函数的图象性质进行解答;(3)利用待定系数法求得直线BC的解析式为y=x3由二次函数图象上点的坐标特征可设点K的坐标为(m,m2m3)如图2,过点K作KEy轴,交BC于点E结合已知条件和(2)中的结果求得SCBK=则根据图形得到:SCBK=SCEK+SBEK=EKm+EK(4m),把相关线段的长度代入推知:m2+3m=易求得K1(1,),K2(3,)解:(1)把点A(2,0)、B(4,0)分别代入y=ax2+bx3(a0),得,解得,所以该抛物线的解析式为:y=x2x3;(2)设运动时间为t秒,则AP=3t,BQ=tPB=63t由题意得,点C的坐标为(0,3)在RtBOC中,BC=5如
16、图1,过点Q作QHAB于点HQHCO,BHQBOC,即,HQ=tSPBQ=PBHQ=(63t)t=t2+t=(t1)2+当PBQ存在时,0t2当t=1时,SPBQ最大=答:运动1秒使PBQ的面积最大,最大面积是;(3)设直线BC的解析式为y=kx+c(k0)把B(4,0),C(0,3)代入,得,解得,直线BC的解析式为y=x3点K在抛物线上设点K的坐标为(m,m2m3)如图2,过点K作KEy轴,交BC于点E则点E的坐标为(m,m3)EK=m3(m2m3)=m2+m当PBQ的面积最大时,SCBK:SPBQ=5:2,SPBQ=SCBK=SCBK=SCEK+SBEK=EKm+EK(4m)=4EK=2
17、(m2+m)=m2+3m即:m2+3m=解得 m1=1,m2=3K1(1,),K2(3,)点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法在求有关动点问题时要注意该点的运动范围,即自变量的取值范围5在平面直角坐标系中,为原点,抛物线经过点,对称轴为直线,点关于直线的对称点为点.过点作直线轴,交轴于点.()求该抛物线的解析式及对称轴;()点在轴上,当的值最小时,求点的坐标;()抛物线上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由.【答案】()抛物线的解析式为;抛物线的对称轴为直线;()点坐标为;()存在,点坐标为或,理由见解析【解析
18、】【分析】()将点代入二次函数的解析式,即可求出a,再根据对称轴的公式即可求解.()先求出B点胡坐标,要求胡最小值,只需找到B关于轴的对称点,则直线A与y轴的交点就是点P,根据待定系数法求出AB1的解析式,令y=0,即可求出P点的坐标.()设点Q的坐标,并求出AOQ面积,从而得到AOQ面积,根据Q点胡不同位置进行分类,用m及割补法求出面积方程,即可求解.【详解】()经过点,解得,抛物线的解析式为,抛物线的对称轴为直线.()点,对称轴为,点关于对称轴的对称点点坐标为.作点关于轴的对称点,得,设直线AB1的解析式为,把点,点代入得,解得,.直线与轴的交点即为点.令得,点坐标为.(),轴,又,.设点
19、坐标为,如图情况一,作,交延长线于点,化简整理得,解得,.如图情况二,作,交延长线于点,交轴于点,化简整理得,解得,点坐标为或,抛物线上存在点,使得.【点睛】主要考查了二次函数的性质,以及求两边和的最小值,面积等常见的题型,计算量较大,但难度不是很大.6如图,直线l:y3x+3与x轴、y轴分别相交于A、B两点,抛物线yax22ax+a+4(a0)经过点B,交x轴正半轴于点C(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;(3)将点A绕原点旋转得
20、点A,连接CA、BA,在旋转过程中,一动点M从点B出发,沿线段BA以每秒3个单位的速度运动到A,再沿线段AC以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?【答案】(1)yx2+2x+3;(2)S与m的函数表达式是S,S的最大值是,此时动点M的坐标是(,);(3)点M在整个运动过程中用时最少是秒【解析】【分析】(1)首先求出B点的坐标,根据B点的坐标即可计算出二次函数的a值,进而即可计算出二次函数的解析式;(2)计算出C点的坐标,设出M点的坐标,再根据ABM的面积为SS四边形OAMBSAOBSBOM+SOAMSAOB,化简成二次函数,再根据二次函数求解最大值即可.
21、(3)首先证明OHAOAB,再结合AH+ACHC即可计算出t的最小值.【详解】(1)将x0代入y3x+3,得y3,点B的坐标为(0,3),抛物线yax22ax+a+4(a0)经过点B,3a+4,得a1,抛物线的解析式为:yx2+2x+3;(2)将y0代入yx2+2x+3,得x11,x23,点C的坐标为(3,0),点M是抛物线上的一个动点,并且点M在第一象限内,点M的横坐标为m,0m3,点M的坐标为(m,m2+2m+3),将y0代入y3x+3,得x1,点A的坐标(1,0),ABM的面积为S,SS四边形OAMBSAOBSBOM+SOAMSAOB,化简,得S,当m时,S取得最大值,此时S,此时点M的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 2021 中考 数学 压轴 二次 函数 题型 整理 突破 提升 详细 答案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。