七年级下册商丘数学期末试卷练习(Word版-含答案).doc
《七年级下册商丘数学期末试卷练习(Word版-含答案).doc》由会员分享,可在线阅读,更多相关《七年级下册商丘数学期末试卷练习(Word版-含答案).doc(25页珍藏版)》请在咨信网上搜索。
七年级下册商丘数学期末试卷练习(Word版 含答案) 一、选择题 1.如图,已知两直线l1与l2被第三条直线l3所截,则下列说法中不正确的是( ) A.∠2与∠4是邻补角 B.∠2与∠3是对顶角 C.∠1与∠4是内错角 D.∠1与∠2是同位角 2.下列哪些图形是通过平移可以得到的( ) A. B. C. D. 3.在平面直角坐标系中,点(﹣1,m2+1)一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.有下列四个命题:①对顶角相等;②同位角相等;③两点之间,直线最短;④连接直线外一点与直线上各点的所有线段中,垂线段最短.其中是真命题的个数有( ) A.0个 B.1个 C.2个. D.3个 5.如图,直线,,则的度数为( ) A. B. C. D. 6.下列说法中正确的是( ) A.的平方根是 B.的算术平方根是 C.与相等 D.的立方根是 7.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是( ) A. B. C. D. 8.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)……则点A2021的坐标为( ) A.(505,﹣504) B.(506,﹣505) C.(505,﹣505) D.(﹣506,506) 二、填空题 9.25的算术平方根是 _______ . 10.已知点与点关于轴对称,那么点关于轴的对称点的坐标为__________. 11.如图,BE是△ABC的角平分线,AD是△ABC的高,∠ABC=60°,则 ∠AOE=_____. 12.如图,直线 a//b,若∠1 = 40°,则∠2 的度数是______. 13.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=72°,则∠AED′=__. 14.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为____. 15.已知的面积为,其中两个顶点的坐标分别是,顶点在轴上,那么点的坐标为 ____________ 16.如图,一只跳蚤在第一象限及x轴、y轴上跳动,第一秒它从原点跳动到点(0,1),第二秒它从点(0,1)跳到点(1,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],每秒跳动一个单位长度,那么43秒后跳蚤所在位置的坐标是________. 三、解答题 17.(1)计算: (2)计算: (3)计算: (4)计算: 18.求下列各式中的值: (1); (2). 19.请把以下证明过程补充完整,并在下面的括号内填上推理理由: 已知:如图,∠1=∠2,∠A=∠D. 求证:∠B=∠C. 证明:∵∠1=∠2,(已知) 又:∵∠1=∠3,( ) ∴∠2=____________(等量代换) (同位角相等,两直线平行) ∴∠A=∠BFD( ) ∵∠A=∠D(已知) ∴∠D=_____________(等量代换) ∴____________∥CD( ) ∴∠B=∠C( ) 20.如图,在正方形网格中,三角形的三个顶点和点都在格点上(正方形网格的交点称为格点).点,,的坐标分别为,,.平移三角形,使点平移到点,点,分别是,的对应点. (1)请画出平移后的三角形,并分别写出点E、F的坐标; (2)求的面积; (3)在轴上是否存在一点,使得,若存在,请求出的坐标,若不存在,请说明理由. 21.若整数的两个平方根为,;为的整数部分. (1)求及的值; (2)求的立方根. 二十二、解答题 22.如图,8块相同的小长方形地砖拼成一个大长方形, (1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答) (2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗? 二十三、解答题 23.问题情境: 如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°. 问题解决: (1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由; (2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系; (3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC的度数. 24.已知,点为平面内一点,于. (1)如图1,点在两条平行线外,则与之间的数量关系为______; (2)点在两条平行线之间,过点作于点. ①如图2,说明成立的理由; ②如图3,平分交于点平分交于点.若,求的度数. 25.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α. (1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °; (2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为: ; (3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由. (4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为: . 26.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC. (1)求证:∠BED=90°; (2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小; (3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: . 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据对顶角定义可得B说法正确,根据邻补角定义可得A说法正确,根据同位角定义可得D说法正确,根据内错角定义可得C错误. 【详解】 解:A、∠2与∠4是邻补角,说法正确; B、∠2与∠3是对顶角,说法正确; C、∠1与∠4是同旁内角,故原说法错误; D、∠1与∠2是同位角,说法正确; 故选:C. 【点睛】 此题主要考查了对顶角、邻补角、同位角、内错角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形. 2.B 【分析】 根据平移、旋转、轴对称的定义逐项判断即可. 【详解】 A、通过旋转得到,故本选项错误 B、通过平移得到,故本选项正确 C、通过轴对称得到,故本选项错误 D、通过旋转得到,故本选项错误 解析:B 【分析】 根据平移、旋转、轴对称的定义逐项判断即可. 【详解】 A、通过旋转得到,故本选项错误 B、通过平移得到,故本选项正确 C、通过轴对称得到,故本选项错误 D、通过旋转得到,故本选项错误 故选:B. 【点睛】 本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键. 3.B 【分析】 应先判断出点的横纵坐标的符号,进而判断点所在的象限. 【详解】 解:因为点(﹣1,m2+1),横坐标﹣1<0,纵坐标m2+1一定大于0, 所以满足点在第二象限的条件. 故选:B. 【点睛】 本题主要考查平面直角坐标系里象限的坐标,熟练掌握每个象限的坐标符号特点是解题的关键. 4.C 【分析】 根据对顶角的性质、线段的性质、平行线的性质、垂线段的性质进行解答即可. 【详解】 解:①对顶角相等,原命题是真命题; ②两直线平行,同位角相等,不是真命题; ③两点之间,线段最短,原命题不是真命题; ④直线外一点与直线上各点连接的所有线段中,垂线段最短,原命题是真命题. 故选:C. 【点睛】 此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 5.B 【分析】 记∠1顶点为A,∠2顶点为B,∠3顶点为C,过点B作BD∥l1,由平行线的性质可得∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果. 【详解】 如图,过点B作BD∥l1, ∵, ∴BD∥l1∥l2, ∴∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°, ∴∠3+∠DBC+∠ABD+(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°, 又∵∠2+∠3=216°, ∴216°+(180°-∠1)=360°, ∴∠1=36°. 故选:B. 【点睛】 本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键. 6.C 【分析】 根据平方根,立方根,算术平方根的定义解答即可. 【详解】 A.的平方根为,故选项错误; B.的算术平方根是,故选项错误; C.,故选项正确; D.的立方根是,故选项错误; 故选:C. 【点睛】 本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键. 7.D 【分析】 直接利用平行线性质解题即可 【详解】 解:∵直尺的两边互相平行, ∴∠1=∠2,∠3=∠4, ∵三角板的直角顶点在直尺上, ∴∠2+∠4=90°, ∴A,B,C正确. 故选D. 【点睛】 本题考查平行线的基本性质,基础知识扎实是解题关键 8.B 【分析】 求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第 解析:B 【分析】 求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第四象限,根据推导可得出结论; 【详解】 由题可知, 第一象限的点:,…角标除以4余数为2; 第二象限的点:,,…角标除以4余数为3; 第三象限的点:,,…角标除以4余数为0; 第四象限的点:,,…角标除以4余数为1; 由上规律可知:, ∴点在第四象限, 又∵,, 即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商, ∴. 故选:B. 【点睛】 本题主要考查了点的坐标规律,准确理解是解题的关键. 二、填空题 9.5 【详解】 试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根. ∵52=25, ∴25的算术平方根是5. 考点:算术平方根. 解析:5 【详解】 试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根. ∵52=25, ∴25的算术平方根是5. 考点:算术平方根. 10.【分析】 先将a,b求出来,再根据对称性求出坐标即可. 【详解】 根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3. P(2,﹣3)关于y轴对称的点(﹣2,﹣3) 故答案为: (﹣2,﹣ 解析: 【分析】 先将a,b求出来,再根据对称性求出坐标即可. 【详解】 根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3. P(2,﹣3)关于y轴对称的点(﹣2,﹣3) 故答案为: (﹣2,﹣3). 【点睛】 本题考查了关于坐标轴对称的点的坐标特征,熟练掌握是解题的关键. 11.60° 【分析】 先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论. 【详解】 ∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠A 解析:60° 【分析】 先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论. 【详解】 ∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠ABC=×60°=30°,∵AD是△ABC的高,∴∠ADC=90°,∵∠ADC是△OBD的外角,∴∠BOD=∠ADC-∠OBD=90°-30°=60°,∴∠AOE=∠BOD=60°,故答案为60°. 【点睛】 本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和. 12.140° 【详解】 解:∵a∥b,∠1=40°, ∴∠3=∠1=40°, ∴∠2=180°-∠3=180°-40°=140°. 故答案为:140°. 解析:140° 【详解】 解:∵a∥b,∠1=40°, ∴∠3=∠1=40°, ∴∠2=180°-∠3=180°-40°=140°. 故答案为:140°. 13.36° 【分析】 根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值. 【详解】 解:∵四边形ABCD为长方形, ∴AD//BC, ∴∠DEF= 解析:36° 【分析】 根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值. 【详解】 解:∵四边形ABCD为长方形, ∴AD//BC, ∴∠DEF=∠EFB=72°, 又由折叠的性质可得∠D′EF=∠DEF=72°, ∴∠AED′=180°﹣72°﹣72°=36°, 故答案为:36°. 【点睛】 本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答本题的关键. 14.【分析】 由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案. 【详解】 由图可知, 每个图形的最上面的小正方形中的数字是连续奇数,所以第n 解析:【分析】 由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案. 【详解】 由图可知, 每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小正方形中的数字是2n﹣1, 即2n﹣1=11,n=6. ∵2=21,4=22,8=23,…,左下角的小正方形中的数字是2n,∴b=26=64. ∵右下角中小正方形中的数字是2n﹣1+2n,∴a=11+b=11+64=75,∴a+b=75+64=139. 故答案为:139. 【点睛】 本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键. 15.或 【分析】 已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标. 【详解】 ∵ ∴AB=8 ∵的面积为 ∴=16 ∴OC=4 ∴点的坐标为(0,4)或(0,-4) 故答案为:(0,4) 解析:或 【分析】 已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标. 【详解】 ∵ ∴AB=8 ∵的面积为 ∴=16 ∴OC=4 ∴点的坐标为(0,4)或(0,-4) 故答案为:(0,4)或(0,-4) 【点睛】 本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解. 16.(5,6) 【分析】 根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标. 【详解】 解:跳蚤跳到(1,1)位置用时1×2=2秒,下一步向下跳 解析:(5,6) 【分析】 根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标. 【详解】 解:跳蚤跳到(1,1)位置用时1×2=2秒,下一步向下跳动; 跳到(2,2)位置用时2×3=6秒,下一步向左跳动; 跳到(3,3)位置用时3×4=12秒,下一步向下跳动; 跳到(4,4)位置用时4×5=20秒,下一步向左跳动; … 由以上规律可知,跳蚤跳到(n,n)位置用时n(n+1)秒, 当n为奇数时,下一步向下跳动; 当n为偶数时,下一步向左跳动; ∴第6×7=42秒时跳蚤位于(6,6)位置,下一步向左跳动, 则第43秒时,跳蚤需从(6,6)向左跳动1个单位到(5,6), 故答案为:(5,6). 【点睛】 此题考查了点的坐标问题,解题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间. 三、解答题 17.(1);(2);(3);(4) 【分析】 (1)根据算术平方根的求法计算即可; (2)先化简绝对值,再合并即可; (3)分别进行二次根式的化简、开立方,然后合并求解; (4)先化简绝对值和二次根式, 解析:(1);(2);(3);(4) 【分析】 (1)根据算术平方根的求法计算即可; (2)先化简绝对值,再合并即可; (3)分别进行二次根式的化简、开立方,然后合并求解; (4)先化简绝对值和二次根式,再合并即可. 【详解】 解:(1) (2) (3) (4) 【点睛】 本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识. 18.(1);(2) 【分析】 (1)先移项,然后运用直接开平方法,即可求出的值; (2)方程两边同时除以8,然后计算立方根,即可得到答案. 【详解】 解:(1) ∴, ∴, ∴; (2), ∴, ∴, 解析:(1);(2) 【分析】 (1)先移项,然后运用直接开平方法,即可求出的值; (2)方程两边同时除以8,然后计算立方根,即可得到答案. 【详解】 解:(1) ∴, ∴, ∴; (2), ∴, ∴, ∴; 【点睛】 本题考查了直接开平方法、开立方根法求方程的解,解题的关键是熟练掌握直接开平方法、开立方根法进行解题. 19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据对顶角相等,平行线的性质与判定定理填空即可. 【详解】 证明:∵∠1=∠2,( 解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据对顶角相等,平行线的性质与判定定理填空即可. 【详解】 证明:∵∠1=∠2,(已知) 又:∵∠1=∠3,(对顶角相等) ∴∠2=∠3(等量代换) (同位角相等,两直线平行) ∴∠A=∠BFD(两直线平行,同位角相等) ∵∠A=∠D(已知) ∴∠D=∠BFD(等量代换) ∴AB∥CD(内错角相等,两直线平行) ∴∠B=∠C(两直线平行,内错角相等). 【点睛】 本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键. 20.(1)画图见解析,E(2,-2),F(6,-1);(2)7;(3)(10,0)或(-18,0) 【分析】 (1)根据平移的性质即可画出平移后的三角形DEF,并写出点E,F的坐标; (2)利用割补法计 解析:(1)画图见解析,E(2,-2),F(6,-1);(2)7;(3)(10,0)或(-18,0) 【分析】 (1)根据平移的性质即可画出平移后的三角形DEF,并写出点E,F的坐标; (2)利用割补法计算即可; (3)根据△ABC的面积得到△BCM的面积,从而计算出BM,可得点M的坐标; 【详解】 解:(1)如图,三角形DEF即为所求,点E(2,-2),F(6,-1); (2)S△ABC==7; (3)∵,点C的坐标为(0,1), ∴BM=, ∵B(-4,0), ∴点M的坐标为(10,0)或(-18,0). 【点睛】 本题考查了作图-平移变换,三角形的面积,解决本题的关键是掌握平移的性质. 21.(1)a=4,m=36;(2)6 【分析】 (1)根据平方根的性质得到,求出a值,从而得到m; (2)估算出的范围,得到b值,代入求出,从而得到的立方根. 【详解】 解:(1)∵整数的两个平方根为, 解析:(1)a=4,m=36;(2)6 【分析】 (1)根据平方根的性质得到,求出a值,从而得到m; (2)估算出的范围,得到b值,代入求出,从而得到的立方根. 【详解】 解:(1)∵整数的两个平方根为,, ∴, 解得:, ∴, ∴m=36; (2)∵为的整数部分, ∴, ∴, ∴b=9, ∴, ∴的立方根为6. 【点睛】 本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义. 二十二、解答题 22.(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解: 解析:(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得: , 解得:, ∴长是1.5m,宽是0.5m. (2)∵正方形的面积为7平方米, ∴正方形的边长是米, ∵<3, ∴他不能剪出符合要求的桌布. 【点睛】 本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键. 二十三、解答题 23.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58° 【分析】 (1)过点P作PE∥AB,根据平行线的判定与性质即可求解; (2)分点P在线段MN或NM的延长线 解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58° 【分析】 (1)过点P作PE∥AB,根据平行线的判定与性质即可求解; (2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解; (3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解. 【详解】 解:(1)如图2,过点P作PE∥AB, ∵AB∥CD, ∴PE∥AB∥CD, ∴∠APE=α,∠CPE=β, ∴∠APC=∠APE+∠CPE=α+β. (2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时, ∵AB∥CD,∠PAB=α, ∴∠1=∠PAB=α, ∵∠1=∠APC+∠PCD,∠PCD=β, ∴α=∠APC+β, ∴∠APC=α-β; 如图,在(1)的条件下,如果点P在线段NM的延长线上运动时, ∵AB∥CD,∠PCD=β, ∴∠2=∠PCD=β, ∵∠2=∠PAB+∠APC,∠PAB=α, ∴β=α+∠APC, ∴∠APC=β-α; (3)如图3,过点P,Q分别作PE∥AB,QF∥AB, ∵AB∥CD, ∴AB∥QF∥PE∥CD, ∴∠BAP=∠APE,∠PCD=∠EPC, ∵∠APC=116°, ∴∠BAP+∠PCD=116°, ∵AQ平分∠BAP,CQ平分∠PCD, ∴∠BAQ=∠BAP,∠DCQ=∠PCD, ∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°, ∵AB∥QF∥CD, ∴∠BAQ=∠AQF,∠DCQ=∠CQF, ∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°, ∴∠AQC=58°. 【点睛】 此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键. 24.(1)∠A+∠C=90°;(2)①见解析;②105° 【分析】 (1)根据平行线的性质以及直角三角形的性质进行证明即可; (2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥ 解析:(1)∠A+∠C=90°;(2)①见解析;②105° 【分析】 (1)根据平行线的性质以及直角三角形的性质进行证明即可; (2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°. 【详解】 解:(1)如图1,AM与BC的交点记作点O, ∵AM∥CN, ∴∠C=∠AOB, ∵AB⊥BC, ∴∠A+∠AOB=90°, ∴∠A+∠C=90°; (2)①如图2,过点B作BG∥DM, ∵BD⊥AM, ∴DB⊥BG, ∴∠DBG=90°, ∴∠ABD+∠ABG=90°, ∵AB⊥BC, ∴∠CBG+∠ABG=90°, ∴∠ABD=∠CBG, ∵AM∥CN,BG∥DM, ∴∠C=∠CBG, ∠ABD=∠C; ②如图3,过点B作BG∥DM, ∵BF平分∠DBC,BE平分∠ABD, ∴∠DBF=∠CBF,∠DBE=∠ABE, 由(2)知∠ABD=∠CBG, ∴∠ABF=∠GBF, 设∠DBE=α,∠ABF=β, 则∠ABE=α,∠ABD=2α=∠CBG, ∠GBF=∠AFB=β, ∠BFC=3∠DBE=3α, ∴∠AFC=3α+β, ∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°, ∴∠FCB=∠AFC=3α+β, △BCF中,由∠CBF+∠BFC+∠BCF=180°得: 2α+β+3α+3α+β=180°, ∵AB⊥BC, ∴β+β+2α=90°, ∴α=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 【点睛】 本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用. 25.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α. 【详解】 试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2 解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α. 【详解】 试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可; (2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可; (3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α; (4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系. 试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°, ∴∠1+∠2=∠C+∠α, ∵∠C=90°,∠α=50°, ∴∠1+∠2=140°, 故答案为140; (2)由(1)得∠α+∠C=∠1+∠2, ∴∠1+∠2=90°+∠α. 故答案为∠1+∠2=90°+∠α. (3)∠1=90°+∠2+∠α.理由如下:如图③, 设DP与BE的交点为M, ∵∠2+∠α=∠DME,∠DME+∠C=∠1, ∴∠1=∠C+∠2+∠α=90°+∠2+∠α. (4)如图④, 设PE与AC的交点为F, ∵∠PFD=∠EFC, ∴180°-∠PFD=180°-∠EFC, ∴∠α+180°-∠1=∠C+180°-∠2, ∴∠2=90°+∠1-∠α. 故答案为∠2=90°+∠1-∠α 点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键. 26.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°. 【分析】 (1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180° 解析:(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°. 【分析】 (1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案; (2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°, 得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案; (3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解. 【详解】 解:(1)证明:∵BE平分∠ABD, ∴∠EBD=∠ABD, ∵DE平分∠BDC, ∴∠EDB=∠BDC, ∴∠EBD+∠EDB=(∠ABD+∠BDC), ∵AB∥CD, ∴∠ABD+∠BDC=180°, ∴∠EBD+∠EDB=90°, ∴∠BED=180°﹣(∠EBD+∠EDB)=90°. (2)解:如图2, 由(1)知:∠EBD+∠EDB=90°, 又∵∠ABD+∠BDC=180°, ∴∠ABE+∠EDC=90°, 即∠ABE+α+∠FDC=90°, ∵BG平分∠ABE,DG平分∠CDF, ∴∠ABE=2∠ABG,∠CDF=2∠CDG, ∴2∠ABG+2∠CDG=90°﹣α, 过点G作GP∥AB, ∵AB∥CD, ∴GP∥AB∥CD ∴∠ABG=∠BGP,∠PGD=∠CDG, ∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=; (3)如图,过点F、G分别作FN∥AB、GM∥AB, ∵AB∥CD, ∴AB∥GM∥FN∥CD, ∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM, ∴∠BFD=∠BFN+∠DFN=∠3+∠5, ∠BGD=∠BGM+∠DGM=∠4+∠6, ∵BG平分∠FBP,DG平分∠FDQ, ∴∠4=∠FBP=(180°﹣∠3), ∠6=∠FDQ=(180°﹣∠5), ∴∠BFD+∠BGD=∠3+∠5+∠4+∠6, =∠3+∠5+(180°﹣∠3)+(180°﹣∠5), =180°+(∠3+∠5), =180°+∠BFD, 整理得:2∠BGD+∠BFD=360°. 【点睛】 本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 商丘 数学 期末试卷 练习 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文