山东省威海市2018年中考数学真题试题(含答案).doc
《山东省威海市2018年中考数学真题试题(含答案).doc》由会员分享,可在线阅读,更多相关《山东省威海市2018年中考数学真题试题(含答案).doc(14页珍藏版)》请在咨信网上搜索。
山东省威海市2018年中考数学真题试题 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.的绝对值是( ) A.2 B. C. D. 2.下列运算结果正确的是( ) A. B. C. D. 3.若点,,在双曲线上,则的大小关系是( ) A. B. C. D. 4.下图是某圆锥的主视图和左视图,该圆锥的侧面积是( ) A. B. C. D. 5.已知,,则( ) A. B.1 C. D. 6.如图,将一个小球从斜坡的点处抛出,小球的抛出路线可以用二次函数刻画,斜坡可以用一次函数刻画,下列结论错误的是( ) A.当小球抛出高度达到时,小球距点水平距离为 B.小球距点水平距离超过4米呈下降趋势 C.小球落地点距点水平距离为7米 D.斜坡的坡度为 7.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是,,,1,卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是( ) A. B. C. D.[ 8.化简的结果是( ) A. B. C. D. 9.抛物线图象如图所示,下列结论错误的是( ) A. B. C. D. 10.如图,的半径为5,为弦,点为的中点,若,则弦的长为( ) A. B.5 C. D. 11.矩形与如图放置,点共线,点共线,连接,取的中点,连接,若,,则( ) [ A. B. C. D. 12.如图,正方形中,,点为中点,以为直径作圆,点为半圆的中点,连接,,图中阴影部分的面积是( ) A. B. C. D. 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.分解因式:________________. 14.关于的一元二次方程有实根,则的最大整数解是___________. 15.如图,直线与双曲线交于点,,点是直线上一动点,且点在第二象限,连接并延长交双曲线于点,过点作轴,垂足为点.过点作轴,垂足为.若点的坐标为,点的坐标为,设的面积为,的面积为.当时,点的横坐标的取值范围是_____________. 16.,在扇形中,,垂足为,是的内切圆,连接,,则的度数为_______________. 17.用若干个形状,大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为____________. [ 18.如图,在平面直角坐标系中,点的坐标为,以点为圆心,以长为半径画弧,交直线于点,过点作轴,交直线于点,以点为圆心,以长为半径画弧,交直线于点;过点作轴,交直线于点,以点为圆心,以长为半径画板,交直线于点;过点作轴,交直线于点,以点为圆心,以长为半径画弧,交直线于点,…按照如此规律进行下去,点的坐标为____________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 19.解不等式组,并将解集在数轴上表示出来. 20.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件? 21.如图,将矩形(纸片)折叠,使点与边上的点重合,为折痕;点与边上的点重合,为折痕,已知,,.求的长. 22.为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如下图所示: 大赛结束后一个月,再次调查这部分学生“一周诗词诵背数量”,绘制成统计表: 一周诗词诵背数量 3首 4首 5首 6首 7首 8首 人数 10 10 15 40 25 20 请根据调查的信息分析: (1) 活动启动之初学生“一周诗词诵背数量”的中位数为______________. (2) 估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数; (3) 选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果. 23.为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款,小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款,已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元,该产品每月销售量(万件)与销售单价(元)之间的函数关系如图所示. (1)求该网店每月利润(万元)与销售单价(元)之间的函数表达式; (2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款? 24.如图①,在四边形中,,,,垂足分别为,,,点分别为的中点,连接. (1)如图②,当,,时,求的值; (2)若,,则可求出图中哪些线段的长?写出解答过程; (3)连接,试证明与全等; (4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出. 25.如图,抛物线与轴交于点,,与轴交于点,线段的中垂线与对称轴交于点,与轴交于点,与交于点.对称轴与轴交于点. (1)求抛物线的函数表达式; (2)求点的坐标; (3)点为轴上一点,与直线相切于点,与直线相切于点,求点的坐标; (4)点为轴上方抛物线上的点,在对称轴上是否存在一点,使得以点,,,为顶点的四边形是平行四边形?若存在,则直接写出点坐标;若不存在,请说明理由. 威海市2018年初中学业考试 数学试题参考答案 一、选择题 1-5:ABDCD 6-10:ABADD 11、12:CC 二、填空题 13. 14. 15. 16. 17. 18.. 三、解答题 19.解:解不等式①得,. 解不等式②得,. 在同一条数轴上表示不等式①②解集 因此,原不等式组的解集为. 20.解:设升级前每小时生产个零件,根据题意,得 . 解这个方程,得. 经检验,是所列方程的解. ∴(个) 答:软件升级后每小时生产80个零件. 21.解:由题意,得,,,. 过点作,垂足为. 设,则,, ∴. ∴. ∴,. ∴, ∴的长为. 22.答:(1)首. (2); 答:大赛后该学校学生“一周诗词诵背数量”6首(含6首)以上的人数大约为人. (3)①中位数:活动之初,“一周诗词诵背数量”的中位数为首;大赛后,“一周诗词诵背数量”的中位数为6首. ②平均数:活动之初,. 大赛后,. 综上分析,从中位数,平均数可看出,学生在大赛之后“一周诗词诵背数量”都好于活动之初,根据样本估计总体,该校大赛之后“一周诗词诵背数量”好于活动之初,说明该活动效果明显. 23.解:(1)设直线的函数表达式为,代入,,得 , 解,得. ∴直线的函数表达式为. 设直线的函数表达式为,代入,,得 ,解得, ∴直线的函数表达式为. 又∵工资及其他费用为万元. 当时,∴,即. 当时,∴,即. (2)当时, , ∴当时,取得最大值1. 当时, ,∴当时,取得最大值. ∴,即第7个月可以还清全部贷款. 24.解:(1)∵分别是的中点, ∴,. ∴四边形是平行四边形. 又∵. ∴平行四边形是矩形. 又∵,∴,即. ∴矩形为正方形. ∴. ∵,, ∴, ∵, ∴(AAS) ∴,. ∵,. ∴. (2)可求线段的长. 由(1)知,四边形为矩形,,, ∵,即,∴. ∵,, ∴. ∴. ∵,∴ ∴. (3)∵,. ∴与都是直角三角形. ∵分别是中点. ∴,. ∴,. ∵,∴. ∴,. ∴. ∵,. ∴(SAS). (4). 25.解:(1)∵抛物线过点,, ∴设抛物线表达式为. 又∵抛物线过点,将点坐标代入,得 ,解得. ∴抛物线的函数表达式为,即. (2)∵对称轴. ∴点在对称轴上. 设点的坐标为,过点作,垂足为,连接,. ∵为中垂线, ∴. 在和中, ∴,, ∴, 解得. ∴点坐标为. (3)∵点坐标为,点坐标为. ∴. ∵为中垂线,∴. 在和中, ,即, ∴,∴,. 设的半径为,与直线和都相切,有两种情况: ① 当圆心在直线左侧时,连接,,则, ∴,∴四边形为正方形.∴. 在和中, ∴, ∴,∴. ∴,∴. ∴,∴. ∴的坐标为. ②当圆心在直线右侧时,连接,,则四边形为正方形, ∴. 在和中, ∴,即. ∴. ∴,∴. ∴,∴. ∴的坐标为. 综上所述,符合条件的点的坐标是或. (4)存在.,,. 14- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 威海市 2018 年中 数学 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文