山东省济宁市2019年中考数学真题试题(含解析).doc
《山东省济宁市2019年中考数学真题试题(含解析).doc》由会员分享,可在线阅读,更多相关《山东省济宁市2019年中考数学真题试题(含解析).doc(28页珍藏版)》请在咨信网上搜索。
2019年山东省济宁市中考数学试卷 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求 1.(3分)下列四个实数中,最小的是( ) A.﹣ B.﹣5 C.1 D.4 2.(3分)如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是( ) A.65° B.60° C.55° D.75° 3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D. 4.(3分)以下调查中,适宜全面调查的是( ) A.调查某批次汽车的抗撞击能力 B.调查某班学生的身高情况 C.调查春节联欢晚会的收视率 D.调查济宁市居民日平均用水量 5.(3分)下列计算正确的是( ) A.=﹣3 B.= C.=±6 D.﹣=﹣0.6 6.(3分)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是( ) A.﹣=45 B.﹣=45 C.﹣=45 D.﹣=45 7.(3分)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是( ) A. B. C. D. 8.(3分)将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A.y=(x﹣4)2﹣6 B.y=(x﹣1)2﹣3 C.y=(x﹣2)2﹣2 D.y=(x﹣4)2﹣2 9.(3分)如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y=的图象恰好经过A′B的中点D,则k的值是( ) A.9 B.12 C.15 D.18 10.(3分)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是( ) A.﹣7.5 B.7.5 C.5.5 D.﹣5.5 二、填空题:本大题共5小题,每小题3分,共15分。 11.(3分)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是 . 12.(3分)如图,该硬币边缘镌刻的正九边形每个内角的度数是 . 13.(3分)已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标 . 14.(3分)如图,O为Rt△ABC直角边AC上一点,以OC为半径的⊙O与斜边AB相切于点D,交OA于点E,已知BC=,AC=3.则图中阴影部分的面积是 . 15.(3分)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是 . 三、解答题:本大题共7小题,共55分, 16.(6分)计算:6sin60°﹣+()0+|﹣2018| 17.(7分)某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下: 女生阅读时间人数统计表 阅读时间t(小时) 人数 占女生人数百分比 0≤t<0.5 4 20% 0.5≤t<1 m 15% 1≤t<1.5 5 25% 1.5≤t<2 6 n 2≤t<2.5 2 10% 根据图表解答下列问题: (1)在女生阅读时间人数统计表中,m= ,n= ; (2)此次抽样调查中,共抽取了 名学生,学生阅读时间的中位数在 时间段; (3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少? 18.(7分)如图,点M和点N在∠AOB内部. (1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法); (2)请说明作图理由. 19.(8分)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系. 请你根据图象进行探究: (1)小王和小李的速度分别是多少? (2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围. 20.(8分)如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F. (1)求证:AE是⊙O的切线; (2)若DH=9,tanC=,求直径AB的长. 21.(8分)阅读下面的材料: 如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2, (1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数; (2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数. 例题:证明函数f(x)=(x>0)是减函数. 证明:设0<x1<x2, f(x1)﹣f(x2)=﹣==. ∵0<x1<x2, ∴x2﹣x1>0,x1x2>0. ∴>0.即f(x1)﹣f(x2)>0. ∴f(x1)>f(x2). ∴函数f(x)═(x>0)是减函数. 根据以上材料,解答下面的问题: 已知函数f(x)=+x(x<0), f(﹣1)=+(﹣1)=0,f(﹣2)=+(﹣2)=﹣ (1)计算:f(﹣3)= ,f(﹣4)= ; (2)猜想:函数f(x)=+x(x<0)是 函数(填“增”或“减”); (3)请仿照例题证明你的猜想. 22.(11分)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G. (1)求线段CE的长; (2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y. ①写出y关于x的函数解析式,并求出y的最小值; ②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由. 2019年山东省济宁市中考数学试卷 参考答案与试题解析 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求 1.(3分)下列四个实数中,最小的是( ) A.﹣ B.﹣5 C.1 D.4 【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可. 【解答】解:根据实数大小比较的方法,可得 ﹣5<﹣<1<4, 所以四个实数中,最小的数是﹣5. 故选:B. 【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小. 2.(3分)如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是( ) A.65° B.60° C.55° D.75° 【分析】首先证明a∥b,推出∠4=∠5,求出∠5即可. 【解答】解:∵∠1=∠2, ∴a∥b, ∴∠4=∠5, ∵∠5=180°﹣∠3=55°, ∴∠4=55°, 故选:C. 【点评】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型. 3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D. 【分析】直接利用轴对称图形和中心对称图形的概念求解. 【解答】解:A、既是中心对称图形也是轴对称图形,故此选项正确; B、不是轴对称图形,也不是中心对称图形,故此选项错误; C、是轴对称图形,不是中心对称图形,故此选项错误; D、不是轴对称图形,是中心对称图形,故此选项错误. 故选:A. 【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合. 4.(3分)以下调查中,适宜全面调查的是( ) A.调查某批次汽车的抗撞击能力 B.调查某班学生的身高情况 C.调查春节联欢晚会的收视率 D.调查济宁市居民日平均用水量 【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答. 【解答】解:A、调查某批次汽车的抗撞击能力,适合抽样调查,故A选项错误; B、调查某班学生的身高情况,适合全面调查,故B选项正确; C、调查春节联欢晚会的收视率,适合抽样调查,故C选项错误; D、调查济宁市居民日平均用水量,适于抽样调查,故D选项错误. 故选:B. 【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 5.(3分)下列计算正确的是( ) A.=﹣3 B.= C.=±6 D.﹣=﹣0.6 【分析】直接利用二次根式的性质以及立方根的性质分析得出答案. 【解答】解:A、=3,故此选项错误; B、=﹣,故此选项错误; C、=6,故此选项错误; D、﹣=﹣0.6,正确. 故选:D. 【点评】此题主要考查了二次根式的性质以及立方根的性质,正确掌握相关性质是解题关键. 6.(3分)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是( ) A.﹣=45 B.﹣=45 C.﹣=45 D.﹣=45 【分析】直接利用5G网络比4G网络快45秒得出等式进而得出答案. 【解答】解:设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是: ﹣=45. 故选:A. 【点评】此题主要考查了由实际问题抽象出分式方程,正确得出等式是解题关键. 7.(3分)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是( ) A. B. C. D. 【分析】由平面图形的折叠及几何体的展开图解题,注意带图案的一个面不是底面. 【解答】解:选项A和C带图案的一个面是底面,不能折叠成原几何体的形式; 选项B能折叠成原几何体的形式; 选项D折叠后下面带三角形的面与原几何体中的位置不同. 故选:B. 【点评】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力. 8.(3分)将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A.y=(x﹣4)2﹣6 B.y=(x﹣1)2﹣3 C.y=(x﹣2)2﹣2 D.y=(x﹣4)2﹣2 【分析】先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为(3,﹣4),再把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),然后根据顶点式写出平移后的抛物线解析式. 【解答】解:y=x2﹣6x+5=(x﹣3)2﹣4,即抛物线的顶点坐标为(3,﹣4), 把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2), 所以平移后得到的抛物线解析式为y=(x﹣4)2﹣2. 故选:D. 【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 9.(3分)如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y=的图象恰好经过A′B的中点D,则k的值是( ) A.9 B.12 C.15 D.18 【分析】作A′H⊥y轴于H.证明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出点A′坐标,再利用中点坐标公式求出点D坐标即可解决问题. 【解答】解:作A′H⊥y轴于H. ∵∠AOB=∠A′HB=∠ABA′=90°, ∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°, ∴∠BAO=∠A′BH, ∵BA=BA′, ∴△AOB≌△BHA′(AAS), ∴OA=BH,OB=A′H, ∵点A的坐标是(﹣2,0),点B的坐标是(0,6), ∴OA=2,OB=6, ∴BH=OA=2,A′H=OB=6, ∴OH=4, ∴A′(6,4), ∵BD=A′D, ∴D(3,5), ∵反比例函数y=的图象经过点D, ∴k=15. 故选:C. 【点评】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化﹣旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题. 10.(3分)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是( ) A.﹣7.5 B.7.5 C.5.5 D.﹣5.5 【分析】求出数列的前4个数,从而得出这个数列以﹣2,,依次循环,且﹣2++=﹣,再求出这100个数中有多少个周期,从而得出答案. 【解答】解:∵a1=﹣2, ∴a2==,a3==,a4==﹣2,…… ∴这个数列以﹣2,,依次循环,且﹣2++=﹣, ∵100÷3=33…1, ∴a1+a2+…+a100=33×(﹣)﹣2=﹣=﹣7.5, 故选:A. 【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 二、填空题:本大题共5小题,每小题3分,共15分。 11.(3分)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是 ﹣2 . 【分析】根据根与系数的关系得出x1x2==﹣2,即可得出另一根的值. 【解答】解:∵x=1是方程x2+bx﹣2=0的一个根, ∴x1x2==﹣2, ∴1×x2=﹣2, 则方程的另一个根是:﹣2, 故答案为﹣2. 【点评】此题主要考查了一元二次方程根与系数的关系,得出两根之积求出另一根是解决问题的关键. 12.(3分)如图,该硬币边缘镌刻的正九边形每个内角的度数是 140° . 【分析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数. 【解答】解:该正九边形内角和=180°×(9﹣2)=1260°, 则每个内角的度数==140°. 故答案为:140°. 【点评】本题主要考查了多边形的内角和定理:180°•(n﹣2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和. 13.(3分)已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标 (1,﹣2)(答案不唯一) . 【分析】直接利用第四象限内点的坐标特点得出x,y的取值范围,进而得出答案. 【解答】解:∵点P(x,y)位于第四象限,并且x≤y+4(x,y为整数), ∴x>0,y<0, ∴当x=1时,1≤y+4, 解得:0>y≥﹣3, ∴y可以为:﹣2, 故写一个符合上述条件的点P的坐标可以为:(1,﹣2)(答案不唯一). 故答案为:(1,﹣2)(答案不唯一). 【点评】此题主要考查了点的坐标,正确把握横纵坐标的符号是解题关键. 14.(3分)如图,O为Rt△ABC直角边AC上一点,以OC为半径的⊙O与斜边AB相切于点D,交OA于点E,已知BC=,AC=3.则图中阴影部分的面积是 . 【分析】首先利用勾股定理求出AB的长,再证明BD=BC,进而由AD=AB﹣BD可求出AD的长度;利用特殊角的锐角三角函数可求出∠A的度数,则圆心角∠DOA的度数可求出,在直角三角形ODA中求出OD的长,最后利用扇形的面积公式即可求出阴影部分的面积. 【解答】解:在Rt△ABC中,∵BC=,AC=3. ∴AB==2, ∵BC⊥OC, ∴BC是圆的切线, ∵⊙O与斜边AB相切于点D, ∴BD=BC, ∴AD=AB﹣BD=2﹣=; 在Rt△ABC中,∵sinA===, ∴∠A=30°, ∵⊙O与斜边AB相切于点D, ∴OD⊥AB, ∴∠AOD=90°﹣∠A=60°, ∵=tanA=tan30°, ∴=, ∴OD=1, ∴S阴影==. 故答案是:. 【点评】本题考查了切线的性质定理、切线长定理以及勾股定理的运用,熟记和圆有关的各种性质定理是解题的关键. 15.(3分)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是 x<﹣3或x>1 . 【分析】观察两函数图象的上下位置关系,即可得出结论. 【解答】解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点, ∴﹣m+n=p,3m+n=q, ∴抛物线y=ax2+c与直线y=﹣mx+n交于P(1,p),Q(﹣3,q)两点, 观察函数图象可知:当x<﹣3或x>1时,直线y=﹣mx+n在抛物线y=ax2+bx+c的下方, ∴不等式ax2+mx+c>n的解集为x<﹣3或x>1. 故答案为:x<﹣3或x>1. 【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键. 三、解答题:本大题共7小题,共55分, 16.(6分)计算:6sin60°﹣+()0+|﹣2018| 【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:原式=6×, =2019. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 17.(7分)某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下: 女生阅读时间人数统计表 阅读时间t(小时) 人数 占女生人数百分比 0≤t<0.5 4 20% 0.5≤t<1 m 15% 1≤t<1.5 5 25% 1.5≤t<2 6 n 2≤t<2.5 2 10% 根据图表解答下列问题: (1)在女生阅读时间人数统计表中,m= 3 ,n= 30% ; (2)此次抽样调查中,共抽取了 50 名学生,学生阅读时间的中位数在 1≤t<1.5 时间段; (3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少? 【分析】(1)由0≤t<0.5时间段的人数及其所占百分比可得女生人数,再根据百分比的意义求解可得; (2)将男女生人数相加可得总人数,再根据中位数的概念求解可得; (3)利用列举法求得所有结果的个数,然后利用概率公式即可求解. 【解答】解:(1)女生总人数为4÷20%=20(人), ∴m=20×15%=3,n=×100%=30%, 故答案为:3,30%; (2)学生总人数为20+6+5+12+4+3=50(人), 这组数据的中位数是第25、26个数据的平均数,而第25、26个数据均落在1≤t<1.5范围内, ∴学生阅读时间的中位数在1≤t<1.5时间段, 故答案为:50,1≤t<1.5; (3)学习时间在2~2.5小时的有女生2人,男生3人. 共有20种可能情况,则恰好抽到男女各一名的概率是=. 【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题. 18.(7分)如图,点M和点N在∠AOB内部. (1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法); (2)请说明作图理由. 【分析】(1)根据角平分线的作法、线段垂直平分线的作法作图; (2)根据角平分线的性质、线段垂直平分线的性质解答. 【解答】解:(1)如图,点P到点M和点N的距离相等,且到∠AOB两边的距离也相等; (2)理由:角的平分线上的点到角的两边的距离相等、直平分线上的点到线段两端点的距离相等. 【点评】本题考查的是复杂作图、角平分线的性质、线段垂直平分线的性质,掌握基本作图的一般步骤、角平分线的性质、线段垂直平分线的性质是解题的关键. 19.(8分)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系. 请你根据图象进行探究: (1)小王和小李的速度分别是多少? (2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围. 【分析】(1)根据题意和函数图象中的数据可以分别求得王和小李的速度; (2)根据(1)中的结果和图象中的数据可以求得点C的坐标,从而可以解答本题. 【解答】解:(1)由图可得, 小王的速度为:30÷3=10km/h, 小李的速度为:(30﹣10×1)÷1=20km/h, 答:小王和小李的速度分别是10km/h、20km/h; (2)小李从乙地到甲地用的时间为:30×20=1.5h, 当小李到达甲地时,两人之间的距离为:10×1.5=15km, ∴点C的坐标为(1.5,15), 设线段BC所表示的y与x之间的函数解析式为y=kx+b, ,得, 即线段BC所表示的y与x之间的函数解析式是y=30x﹣30(1≤x≤1.5). 【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答. 20.(8分)如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F. (1)求证:AE是⊙O的切线; (2)若DH=9,tanC=,求直径AB的长. 【分析】(1)根据垂径定理得到OE⊥AC,求得∠AFE=90°,求得∠EAO=90°,于是得到结论; (2)根据等腰三角形的性质和圆周角定理得到∠ODB=∠C,求得tanC=tan∠ODB==,设HF=3x,DF=4x,根据勾股定理得到DF=,HF=,根据相似三角形的性质得到CF==,求得AF=CF=,设OA=OD=x,根据勾股定理即可得到结论. 【解答】解:(1)∵D是的中点, ∴OE⊥AC, ∴∠AFE=90°, ∴∠E+∠EAF=90°, ∵∠AOE=2∠C,∠CAE=2∠C, ∴∠CAE=∠AOE, ∴∠E+∠AOE=90°, ∴∠EAO=90°, ∴AE是⊙O的切线; (2)∵∠C=∠B, ∵OD=OB, ∴∠B=∠ODB, ∴∠ODB=∠C, ∴tanC=tan∠ODB==, ∴设HF=3x,DF=4x, ∴DH=5x=9, ∴x=, ∴DF=,HF=, ∵∠C=∠FDH,∠DFH=∠CFD, ∴△DFH∽△CFD, ∴=, ∴CF==, ∴AF=CF=, 设OA=OD=x, ∴OF=x﹣, ∵AF2+OF2=OA2, ∴()2+(x﹣)2=x2, 解得:x=10, ∴OA=10, ∴直径AB的长为20. 【点评】本题考查了切线的判定和性质,圆周角定理,垂径定理,相似三角形的判定和性质,正确的识别图形是解题的关键. 21.(8分)阅读下面的材料: 如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2, (1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数; (2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数. 例题:证明函数f(x)=(x>0)是减函数. 证明:设0<x1<x2, f(x1)﹣f(x2)=﹣==. ∵0<x1<x2, ∴x2﹣x1>0,x1x2>0. ∴>0.即f(x1)﹣f(x2)>0. ∴f(x1)>f(x2). ∴函数f(x)═(x>0)是减函数. 根据以上材料,解答下面的问题: 已知函数f(x)=+x(x<0), f(﹣1)=+(﹣1)=0,f(﹣2)=+(﹣2)=﹣ (1)计算:f(﹣3)= ﹣ ,f(﹣4)= ﹣ ; (2)猜想:函数f(x)=+x(x<0)是 增 函数(填“增”或“减”); (3)请仿照例题证明你的猜想. 【分析】(1)根据题目中函数解析式可以解答本题; (2)由(1)结论可得; (3)根据题目中例子的证明方法可以证明(1)中的猜想成立. 【解答】解:(1)∵f(x)=+x(x<0), ∴f(﹣3)=﹣3=﹣,f(﹣4)=﹣4=﹣ 故答案为:﹣,﹣ (2)∵﹣4<﹣3,f(﹣4)>f(﹣3) ∴函数f(x)=+x(x<0)是增函数 故答案为:增 (3)设x1<x2<0, ∵f(x1)﹣f(x2)=+x1﹣﹣x2=(x1﹣x2)(1﹣) ∵x1<x2<0, ∴x1﹣x2<0,x1+x2<0, ∴f(x1)﹣f(x2)<0 ∴f(x1)<f(x2) ∴函数f(x)=+x(x<0)是增函数 【点评】本题考查反比例函数图象上的坐标特征、反比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答. 22.(11分)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G. (1)求线段CE的长; (2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y. ①写出y关于x的函数解析式,并求出y的最小值; ②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由. 【分析】(1)由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ECF中,利用勾股定理构建方程即可解决问题. (2)①证明△ADM∽△GMN,可得=,由此即可解决问题. ②存在.有两种情形:如图3﹣1中,当MN=MD时.如图3﹣2中,当MN=DN时,作MH⊥DG于H.分别求解即可解决问题. 【解答】解:(1)如图1中, ∵四边形ABCD是矩形, ∴AD=BC=10,AB=CD=8, ∴∠B=∠BCD=90°, 由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x. 在Rt△ABF中,BF==6, ∴CF=BC﹣BF=10﹣6=4, 在Rt△EFC中,则有:(8﹣x)2=x2+42, ∴x=3, ∴EC=3. (2)①如图2中, ∵AD∥CG, ∴=, ∴=, ∴CG=6, ∴BG=BC+CG=16, 在Rt△ABG中,AG==8, 在Rt△DCG中,DG==10, ∵AD=DG=10, ∴∠DAG=∠AGD, ∵∠DMG=∠DMN+∠NMG=∠DAM+∠ADM,∠DMN=∠DAM, ∴∠ADM=∠NMG, ∴△ADM∽△GMN, ∴=, ∴=, ∴y=x2﹣x+10. 当x=4时,y有最小值,最小值=2. ②存在.有两种情形:如图3﹣1中,当MN=MD时, ∵∠MDN=∠GMD,∠DMN=∠DGM, ∴△DMN∽△DGM, ∴=, ∵MN=DM, ∴DG=GM=10, ∴x=AM=8﹣10. 如图3﹣2中,当MN=DN时,作MH⊥DG于H. ∵MN=DN, ∴∠MDN=∠DMN, ∵∠DMN=∠DGM, ∴∠MDG=∠MGD, ∴MD=MG, ∵BH⊥DG, ∴DH=GH=5, 由△GHM∽△GBA,可得=, ∴=, ∴MG=, ∴x=AM=8﹣=. 综上所述,满足条件的x的值为8﹣10或. 【点评】本题属于四边形综合题,考查了矩形的性质,翻折变换,解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题. 28- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 济宁市 2019 年中 数学 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文