湖南省长沙市2019年中考数学真题试题(含解析).doc
《湖南省长沙市2019年中考数学真题试题(含解析).doc》由会员分享,可在线阅读,更多相关《湖南省长沙市2019年中考数学真题试题(含解析).doc(30页珍藏版)》请在咨信网上搜索。
2019年湖南省长沙市中考数学试卷 一、选择题(本题共12小题,每题3分,共36分) 1.(3分)下列各数中,比﹣3小的数是( ) A.﹣5 B.﹣1 C.0 D.1 2.(3分)根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到15000000000元,确保安全供用电需求.数据15000000000用科学记数法表示为( ) A.15×109 B.1.5×109 C.1.5×1010 D.0.15×1011 3.(3分)下列计算正确的是( ) A.3a+2b=5ab B.(a3)2=a6 C.a6÷a3=a2 D.(a+b)2=a2+b2 4.(3分)下列事件中,是必然事件的是( ) A.购买一张彩票,中奖 B.射击运动员射击一次,命中靶心 C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是180° 5.(3分)如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是( ) A.80° B.90° C.100° D.110° 6.(3分)某个几何体的三视图如图所示,该几何体是( ) A. B. C. D. 7.(3分)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( ) A.平均数 B.中位数 C.众数 D.方差 8.(3分)一个扇形的半径为6,圆心角为120°,则该扇形的面积是( ) A.2π B.4π C.12π D.24π 9.(3分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是( ) A.20° B.30° C.45° D.60° 10.(3分)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( ) A.30nmile B.60nmile C.120nmile D.(30+30)nmile 11.(3分)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( ) A. B. C. D. 12.(3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是( ) A.2 B.4 C.5 D.10 二、填空题(本大题共6小题,每小题3分,共18分) 13.(3分)式子在实数范围内有意义,则实数x的取值范围是 . 14.(3分)分解因式:am2﹣9a= . 15.(3分)不等式组的解集是 . 16.(3分)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表: 摸球实验次数 100 1000 5000 10000 50000 100000 “摸出黑球”的次数 36 387 2019 4009 19970 40008 “摸出黑球”的频率(结果保留小数点后三位) 0.360 0.387 0.404 0.401 0.399 0.400 根据试验所得数据,估计“摸出黑球”的概率是 .(结果保留小数点后一位) 17.(3分)如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是 m. 18.(3分)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论: ①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA. 其中正确的结论的序号是 .(只填序号) 三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分。解答应写出必要的文字说明、证明过程或验算步骤) 19.(6分)计算:|﹣|+()﹣1﹣÷﹣2cos60°. 20.(6分)先化简,再求值:(﹣)÷,其中a=3. 21.(8分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动.为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图. 等级 频数 频率 优秀 21 42% 良好 m 40% 合格 6 n% 待合格 3 6% (1)本次调查随机抽取了 名学生;表中m= ,n= ; (2)补全条形统计图; (3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人. 22.(8分)如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G. (1)求证:BE=AF; (2)若AB=4,DE=1,求AG的长. 23.(9分)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次. (1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率; (2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次? 24.(9分)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比. (1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”). ①四条边成比例的两个凸四边形相似;( 命题) ②三个角分别相等的两个凸四边形相似;( 命题) ③两个大小不同的正方形相似.( 命题) (2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,==.求证:四边形ABCD与四边形A1B1C1D1相似. (3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求的值. 25.(10分)已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数). (1)若抛物线的顶点坐标为(1,1),求b,c的值; (2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围; (3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好≤≤,求m,n的值. 26.(10分)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C. (1)求点A的坐标; (2)过点C作⊙P的切线CE交x轴于点E. ①如图1,求证:CE=DE; ②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值. 2019年湖南省长沙市中考数学试卷 参考答案与试题解析 一、选择题(本题共12小题,每题3分,共36分) 1.(3分)下列各数中,比﹣3小的数是( ) A.﹣5 B.﹣1 C.0 D.1 【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可. 【解答】解:﹣5<﹣3<﹣1<0<1, 所以比﹣3小的数是﹣5, 故选:A. 【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小. 2.(3分)根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到15000000000元,确保安全供用电需求.数据15000000000用科学记数法表示为( ) A.15×109 B.1.5×109 C.1.5×1010 D.0.15×1011 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:数据150 0000 0000用科学记数法表示为1.5×1010. 故选:C. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 3.(3分)下列计算正确的是( ) A.3a+2b=5ab B.(a3)2=a6 C.a6÷a3=a2 D.(a+b)2=a2+b2 【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可. 【解答】解:A、3a与2b不是同类项,故不能合并,故选项A不合题意; B、(a3)2=a6,故选项B符合题意; C、a6÷a3=a3,故选项C不符合题意; D、(a+b)2=a2+2ab+b2,故选项D不合题意. 故选:B. 【点评】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键. 4.(3分)下列事件中,是必然事件的是( ) A.购买一张彩票,中奖 B.射击运动员射击一次,命中靶心 C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是180° 【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的. 【解答】解:A.购买一张彩票中奖,属于随机事件,不合题意; B.射击运动员射击一次,命中靶心,属于随机事件,不合题意; C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意; D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意; 故选:D. 【点评】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件. 5.(3分)如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是( ) A.80° B.90° C.100° D.110° 【分析】直接利用邻补角的定义结合平行线的性质得出答案. 【解答】解:∵∠1=80°, ∴∠3=100°, ∵AB∥CD, ∴∠2=∠3=100°. 故选:C. 【点评】此题主要考查了平行线的性质以及邻补角的定义,正确掌握平行线的性质是解题关键. 6.(3分)某个几何体的三视图如图所示,该几何体是( ) A. B. C. D. 【分析】根据几何体的三视图判断即可. 【解答】解:由三视图可知:该几何体为圆锥. 故选:D. 【点评】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大. 7.(3分)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( ) A.平均数 B.中位数 C.众数 D.方差 【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可. 【解答】解:11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了. 故选:B. 【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数. 8.(3分)一个扇形的半径为6,圆心角为120°,则该扇形的面积是( ) A.2π B.4π C.12π D.24π 【分析】根据扇形的面积公式S=计算即可. 【解答】解:S==12π, 故选:C. 【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式S=是解题的关键. 9.(3分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是( ) A.20° B.30° C.45° D.60° 【分析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案. 【解答】解:在△ABC中,∵∠B=30°,∠C=90°, ∴∠BAC=180°﹣∠B﹣∠C=60°, 由作图可知MN为AB的中垂线, ∴DA=DB, ∴∠DAB=∠B=30°, ∴∠CAD=∠BAC﹣∠DAB=30°, 故选:B. 【点评】本题主要考查作图﹣基本作图,熟练掌握中垂线的作图和性质是解题的关键. 10.(3分)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( ) A.30nmile B.60nmile C.120nmile D.(30+30)nmile 【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长. 【解答】解:过C作CD⊥AB于D点, ∴∠ACD=30°,∠BCD=45°,AC=60. 在Rt△ACD中,cos∠ACD=, ∴CD=AC•cos∠ACD=60×=30. 在Rt△DCB中,∵∠BCD=∠B=45°, ∴CD=BD=30, ∴AB=AD+BD=30+30. 答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile. 故选:D. 【点评】此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线. 11.(3分)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( ) A. B. C. D. 【分析】根据题意可以列出相应的方程组,本题得以解决. 【解答】解:由题意可得, , 故选:A. 【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 12.(3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是( ) A.2 B.4 C.5 D.10 【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题. 【解答】解:如图,作DH⊥AB于H,CM⊥AB于M. ∵BE⊥AC, ∴∠ABE=90°, ∵tanA==2,设AE=a,BE=2a, 则有:100=a2+4a2, ∴a2=20, ∴a=2或﹣2(舍弃), ∴BE=2a=4, ∵AB=AC,BE⊥AC,CM⊥AC, ∴CM=BE=4(等腰三角形两腰上的高相等)) ∵∠DBH=∠ABE,∠BHD=∠BEA, ∴sin∠DBH===, ∴DH=BD, ∴CD+BD=CD+DH, ∴CD+DH≥CM, ∴CD+BD≥4, ∴CD+BD的最小值为4. 故选:B. 【点评】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型. 二、填空题(本大题共6小题,每小题3分,共18分) 13.(3分)式子在实数范围内有意义,则实数x的取值范围是 x≥5 . 【分析】直接利用二次根式有意义的条件进而得出答案. 【解答】解:式子在实数范围内有意义,则x﹣5≥0, 故实数x的取值范围是:x≥5. 故答案为:x≥5. 【点评】此题主要考查了二次根式有意义的条件,正确把握相关定义是解题关键. 14.(3分)分解因式:am2﹣9a= a(m+3)(m﹣3) . 【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解. 【解答】解:am2﹣9a =a(m2﹣9) =a(m+3)(m﹣3). 故答案为:a(m+3)(m﹣3). 【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 15.(3分)不等式组的解集是 ﹣1≤x<2 . 【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集. 【解答】解: 解不等式①得:x≥﹣1, 解不等式②得:x<2, ∴不等式组的解集为:﹣1≤x<2, 故答案为:﹣1≤x<2. 【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 16.(3分)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表: 摸球实验次数 100 1000 5000 10000 50000 100000 “摸出黑球”的次数 36 387 2019 4009 19970 40008 “摸出黑球”的频率(结果保留小数点后三位) 0.360 0.387 0.404 0.401 0.399 0.400 根据试验所得数据,估计“摸出黑球”的概率是 0.4 .(结果保留小数点后一位) 【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解; 【解答】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近, 故摸到白球的频率估计值为0.4; 故答案为:0.4. 【点评】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率. 17.(3分)如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是 100 m. 【分析】先判断出DE是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2DE,问题得解. 【解答】解:∵点D,E分别是AC,BC的中点, ∴DE是△ABC的中位线, ∴AB=2DE=2×50=100米. 故答案为:100. 【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键. 18.(3分)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论: ①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA. 其中正确的结论的序号是 ①③④ .(只填序号) 【分析】①设点A(m,),M(n,),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断. ②△OMA不一定是等边三角形,故结论不一定成立. ③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+,推出m=k,根据OM=AM,构建方程求出k即可判断. ④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可. 【解答】解:①设点A(m,),M(n,), 则直线AC的解析式为y=﹣x++, ∴C(m+n,0),D(0,), ∴S△ODM=n×=,S△OCA=(m+n)×=, ∴△ODM与△OCA的面积相等,故①正确; ∵反比例函数与正比例函数关于原点对称, ∴O是AB的中点, ∵BM⊥AM, ∴OM=OA, ∴k=mn, ∴A(m,n),M(n,m), ∴AM=(n﹣m),OM=, ∴AM不一定等于OM, ∴∠BAM不一定是60°, ∴∠MBA不一定是30°.故②错误, ∵M点的横坐标为1, ∴可以假设M(1,k), ∵△OAM为等边三角形, ∴OA=OM=AM, 1+k2=m2+, ∴m=k, ∵OM=AM, ∴(1﹣m)2+=1+k2, ∴k2﹣4k+1=0, ∴k=2, ∵m>1, ∴k=2+,故③正确, 如图,作MK∥OD交OA于K. ∵OF∥MK, ∴==, ∴=, ∵OA=OB, ∴=, ∴=, ∵KM∥OD, ∴==2, ∴DM=2AM,故④正确. 故答案为①③④. 【点评】本题考查反比例函数与一次函数的交点问题,三角形的面积,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,学会构造平行线,利用平行线分线段成比例定理解决问题,属于中考填空题中的压轴题. 三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分。解答应写出必要的文字说明、证明过程或验算步骤) 19.(6分)计算:|﹣|+()﹣1﹣÷﹣2cos60°. 【分析】根据绝对值的意义、二次根式的除法法则、负整数指数幂的意义和特殊角的三角函数值进行计算. 【解答】解:原式=+2﹣﹣2× =+2﹣﹣1 =1. 【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 20.(6分)先化简,再求值:(﹣)÷,其中a=3. 【分析】先根据分式混合运算的法则把原式进行化简,再将a的值代入进行计算即可. 【解答】解:原式=• =, 当a=3时,原式==. 【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 21.(8分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动.为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图. 等级 频数 频率 优秀 21 42% 良好 m 40% 合格 6 n% 待合格 3 6% (1)本次调查随机抽取了 50 名学生;表中m= 20 ,n= 12 ; (2)补全条形统计图; (3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人. 【分析】(1)用优秀的人数除以优秀的人数所占的百分比即可得到总人数; (2)根据题意补全条形统计图即可得到结果; (3)全校2000名乘以“优秀”和“良好”等级的学生数所占的百分比即可得到结论. 【解答】解:(1)本次调查随机抽取了21÷42%=50名学生,m=50×40%=20,n=×100=12, 故答案为:50,20,12; (2)补全条形统计图如图所示; (3)2000×=1640人, 答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1640人. 【点评】本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 22.(8分)如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G. (1)求证:BE=AF; (2)若AB=4,DE=1,求AG的长. 【分析】(1)由正方形的性质得出∠BAE=∠ADF=90°,AB=AD=CD,得出AE=DF,由SAS证明△BAE≌△ADF,即可得出结论; (2)由全等三角形的性质得出∠EBA=∠FAD,得出∠GAE+∠AEG=90°,因此∠AGE=90°,由勾股定理得出BE==5,在Rt△ABE中,由三角形面积即可得出结果. 【解答】(1)证明:∵四边形ABCD是正方形, ∴∠BAE=∠ADF=90°,AB=AD=CD, ∵DE=CF, ∴AE=DF, 在△BAE和△ADF中,, ∴△BAE≌△ADF(SAS), ∴BE=AF; (2)解:由(1)得:△BAE≌△ADF, ∴∠EBA=∠FAD, ∴∠GAE+∠AEG=90°, ∴∠AGE=90°, ∵AB=4,DE=1, ∴AE=3, ∴BE===5, 在Rt△ABE中,AB×AE=BE×AG, ∴AG==. 【点评】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键. 23.(9分)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次. (1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率; (2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次? 【分析】(1)设增长率为x,根据“第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次”可列方程求解; (2)用2.42×(1+增长率),计算即可求解. 【解答】解:(1)设增长率为x,根据题意,得 2(1+x)2=2.42, 解得x1=﹣2.1(舍去),x2=0.1=10%. 答:增长率为10%. (2)2.42(1+0.1)=2.662(万人). 答:第四批公益课受益学生将达到2.662万人次. 【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解. 24.(9分)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比. (1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”). ①四条边成比例的两个凸四边形相似;( 假 命题) ②三个角分别相等的两个凸四边形相似;( 假 命题) ③两个大小不同的正方形相似.( 真 命题) (2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,==.求证:四边形ABCD与四边形A1B1C1D1相似. (3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求的值. 【分析】(1)根据相似多边形的定义即可判断. (2)根据相似多边形的定义证明四边成比例,四个角相等即可. (3)四边形ABFE与四边形EFCD相似,证明相似比是1即可解决问题,即证明DE=AE即可. 【解答】(1)解:①四条边成比例的两个凸四边形相似,是假命题,角不一定相等. ②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例. ③两个大小不同的正方形相似.是真命题. 故答案为假,假,真. (2)证明:如图1中,连接BD,B1D1. ∵∠BCD=∠B1C1D1,且=, ∴△BCD∽△B1C1D1, ∴∠CDB=∠C1D1B1,∠C1B1D1=∠CBD, ∵==, ∴=, ∵∠ABC=∠A1B1C1, ∴∠ABD=∠A1B1D1, ∴△ABD∽△A1B1D1, ∴=,∠A=∠A1,∠ADB=∠A1D1B1, ∴,===,∠ADC=∠A1D1C1,∠A=∠A1,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1, ∴四边形ABCD与四边形A1B1C1D1相似. (3)如图2中, ∵四边形ABCD与四边形EFCD相似. ∴=, ∵EF=OE+OF, ∴=, ∵EF∥AB∥CD, ∴=,==, ∴+=+, ∴=, ∵AD=DE+AE, ∴=, ∴2AE=DE+AE, ∴AE=DE, ∴=1. 【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,相似多边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题. 25.(10分)已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数). (1)若抛物线的顶点坐标为(1,1),求b,c的值; (2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围; (3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好≤≤,求m,n的值. 【分析】(1)利用抛物线的顶点坐标和二次函数解析式y=﹣2x2+(b﹣2)x+(c﹣2020)可知,y=﹣2(x﹣1)2+1,易得b、c的值; (2)设抛物线线上关于原点对称且不重合的两点坐标分别是(x0,y0),(﹣x0,﹣y0),代入函数解析式,经过化简得到c=2x02+2020,易得c≥2020; (3)由题意知,抛物线为y=﹣2x2+4x﹣1=﹣2(x﹣1)2+1,则y≤1.利用不等式的性质推知:,易得1≤m<n.由二次函数图象的性质得到:当x=m时,y最大值=﹣2m2+4m﹣1.当x=n时,y最小值=﹣2n2+4n﹣1.所以=﹣2m2+4m﹣1,=﹣2n2+4n﹣1通过解方程求得m、n的值. 【解答】解:(1)由题可知,抛物线解析式是:y=﹣2(x﹣1)2+1=﹣2x2+4x﹣1. ∴. ∴b=6,c=2019. (2)设抛物线线上关于原点对称且不重合的两点坐标分别是(x0,y0),(﹣x0,﹣y0), 代入解析式可得:. ∴两式相加可得:﹣4x02+2(c﹣2020)=0. ∴c=2x02+2020, ∴c≥2020; (3)由(1)可知抛物线为y=﹣2x2+4x﹣1=﹣2(x﹣1)2+1. ∴y≤1. ∵0<m<n,当m≤x≤n时,恰好≤≤, ∴≤. ∴. ∴≤1,即m≥1. ∴1≤m<n. ∵抛物线的对称轴是x=1,且开口向下, ∴当m≤x≤n时,y随x的增大而减小. ∴当x=m时,y最大值=﹣2m2+4m﹣1. 当x=n时,y最小值=﹣2n2+4n﹣1. 又, ∴. 将①整理,得2n3﹣4n2+n+1=0, 变形,得2n2(n﹣1)﹣(2n+1)(n﹣1)=0. ∴(n﹣1)(2n2﹣2n﹣1)=0. ∵n>1, ∴2n2﹣2n﹣1=0. 解得n1=(舍去),n2=. 同理,由②得到:(m﹣1)(2m2﹣2m﹣1)=0. ∵1≤m<n, ∴2m2﹣2m﹣1=0. 解得m1=1,m2=(舍去),m3=(舍去). 综上所述,m=1,n=. 【点评】主要考查了二次函数综合题,解答该题时,需要熟悉二次函数图象上点的坐标特征,二次函数图象的对称性,二次函数图象的增减性,二次函数最值的意义以及一元二次方程的解法.该题计算量比较大,需要细心解答.难度较大. 26.(10分)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C. (1)求点A的坐标; (2)过点C作⊙P的切线CE交x轴于点E. ①如图1,求证:CE=DE; ②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值. 【分析】(1)令y=0,可得ax(x+6)=0,则A点坐标可求出; (2)①连接PC,连接PB延长交x轴于点M,由切线的性质可证得∠ECD=∠COE,则CE=DE; ②设OE=m,由CE2=OE•AE,可得,由∠CAE=∠OBE可得,则,综合整理代入可求出的值. 【解答】解:(1)令ax2+6ax=0, ax(x+6)=0, ∴A(﹣6,0); (2)①证明:如图,连接PC,连接PB延长交x轴于点M, ∵⊙P过O、A、B三点,B为顶点, ∴PM⊥OA,∠PBC+∠BOM=90°, 又∵PC=PB, ∴∠PCB=∠PBC, ∵CE为切线, ∴∠PCB+∠ECD=90°, 又∵∠BDP=∠CDE, ∴∠ECD=∠COE, ∴CE=DE. ②解:设OE=m,即E(m,0), 由切割线定理得:CE2=OE•AE, ∴(m﹣t)2=m•(m+6), ∴①, ∵∠CAE=∠CBD, ∠CAE=∠OBE,∠CBO=∠EBO, 由角平分线定理:, 即:, ∴②, 由①②得, 整理得:t2+18t+36=0, ∴t2=﹣18t﹣36, ∴. 【点评】本题是二次函数与圆的综合问题,涉及二次函数图象与x轴的交点坐标、切线的性质、等腰三角形的判定、切割线定理等知识.把圆的知识镶嵌其中,会灵活运用圆的性质进行计算是解题的关键. 30- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖南省 长沙市 2019 年中 数学 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文