2016年山西省中考数学试题及答案.doc
《2016年山西省中考数学试题及答案.doc》由会员分享,可在线阅读,更多相关《2016年山西省中考数学试题及答案.doc(21页珍藏版)》请在咨信网上搜索。
2016年山西省中考数学试卷 一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)的相反数是( ) A. B.-6 C.6 D. 2.(2016·山西)不等式组的解集是( ) A.x>5 B.x<3 C.-5<x<3 D.x<5 3.(2016·山西)以下问题不适合全面调查的是( ) A.调查某班学生每周课前预习的时间 B.调查某中学在职教师的身体健康状况 C.调查全国中小学生课外阅读情况 D.调查某篮球队员的身高 4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( ) 5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( ) A. B. C. D. 6.(2016·山西)下列运算正确的是 ( ) A. B. C. D. 7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少kg货物.设甲每小时搬运xkg货物,则可列方程为( ) A. B. C. D. 8.(2016·山西)将抛物线向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( ) A. B. C. D. 9.(2016·山西)如图,在ABCD中,AB为的直径,与DC相切于点E,与AD相交于点F,已知AB=12,,则的长为( ) A. B. C. D. 10.(2016·山西)宽与长的比是(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD,BC的中点E,F,连接EF;以点F为圆心,以FD为半径画弧,交BC的延长线与点G;作,交AD的延长线于点H.则图中下列矩形是黄金矩形的是( ) A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH 二、填空题(本大题共5个小题,每小题3分,共15分) 11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 . 12.(2016·山西)已知点(m-1,),(m-3,)是反比例函数图象上的两点,则 (填“>”或“=”或“<”) 13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有 个涂有阴影的小正方形(用含有n的代数式表示). 14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 15.(2016·山西)如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,连接AD,BE⊥AB,AE是的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则HG的长为 三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(2016·山西)(本题共2个小题,每小题5分,共10分) (1)计算: (2)先化简,在求值:,其中x=-2. 17.(2016·山西)(本题7分)解方程: 18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整). (1)补全条形统计图和 扇形统计图; (2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人? (3)要从这些被调查的 学生中随机抽取一人进 行访谈,那么正好抽到对“机电维修”最 感兴趣的学生的概率是 19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务: 阿基米德折弦定理 阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子. 阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理. 阿基米德折弦定理:如图1,AB和BC是的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD. 下面是运用“截长法”证明CD=AB+BD的部分证明过程. 证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG. ∵M是的中点, ∴MA=MC ... 任务:(1)请按照上面的证明思路,写出该证明的剩余部分; (2)填空:如图(3),已知等边△ABC内接于,AB=2,D为 上 一点, ,AE⊥BD与点E,则△BDC的长是 . 20.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货 且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种 销售方案(客户只能选择其中一种方案): 方案A:每千克5.8元,由基地免费送货. 方案B:每千克5元,客户需支付运费2000元. (1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式; (2)求购买量x在什么范围时,选用方案A比方案B付款少; (3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案. 21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号) 22.(2016·山西)(本题12分)综合与实践 问题情境 在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD()沿对角线AC剪开,得到和. 操作发现 (1)将图1中的以A为旋转中心, 逆时针方向旋转角,使 , 得到如图2所示的,分别延长BC 和交于点E,则四边形的 状是 ;……………(2分) (2)创新小组将图1中的以A为 旋转中心,按逆时针方向旋转角 ,使,得到如图3所 示的,连接DB,,得到四边形,发现它是矩形.请你证明这个论; 实践探究 (3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将沿着射线DB方向平移acm,得到,连接,,使四边形恰好为正方形,求a的值.请你解答此问题; (4)请你参照以上操作,将图1中的在同一平面内进行一次平移,得到,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明. 23.如图,在平面直角坐标系中,已知抛物线与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8). (1) 求抛物线的函数表达式,并分别求出点B和点E的坐标; (2) 试探究抛物线上是否存在点F,使≌,若存在,请直接写出点F的坐标;若不存在,请说明理由; (3) 若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,是等腰三角形. 2016年山西省中考数学试卷(解析版) 一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)的相反数是( A ) A. B.-6 C.6 D. 考点:相反数 解析:利用相反数和为0计算 解答:因为a+(-a)=0 ∴的相反数是 2.(2016·山西)不等式组的解集是( C ) A.x>5 B.x<3 C.-5<x<3 D.x<5 考点: 解一元一次不等式组 分析: 先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可. 解答: 解 由①得x>-5 由②得x<3 所以不等式组的解集是-5<x<3 3.(2016·山西)以下问题不适合全面调查的是( C ) A.调查某班学生每周课前预习的时间 B.调查某中学在职教师的身体健康状况 C.调查全国中小学生课外阅读情况 D.调查某篮球队员的身高 考点:全面调查与抽样调查. 分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选 择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查. 解答:A.调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查 B.调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查; C.调查全国中小学生课外阅读情况 ,中学生的人数比较多,适合采取抽样调查; D.调查某篮球队员的身高,此种情况数量不是很大,故必须普查; 4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( A ) 考点:三视图 分析:根据俯视图上的数字确定,每一列上的个数由该方向上的最大数决定. 解答:从左面看第一列可看到3个小正方形,第二列有1个小正方形 故选A. 5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( B ) A. B. C. D. 考点:科学记数法—表示较大的数. 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时, 要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当 原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 解答:将55 000 000用科学记数法表示为:. 6.(2016·山西)下列运算正确的是 ( D ) A. B. C. D. 考点:实数的运算,幂的乘方,同底数幂的除法, 分析:根据实数的运算可判断A. 根据幂的乘方可判断B. 根据同底数幂的除法可判断C. 根据实数的运算可判断D 解答:A.,故A错误 B.,故B错误 C.,故C错误. D.,故选D. 7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少kg货物.设甲每小时搬运xkg货物,则可列方程为( B ) A. B. C. D. 考点:分式方程的应用 分析:设甲每小时搬运xkg货物,则甲搬运5000kg所用的时间是:, 根据题意乙每小时搬运的货物为x+600,乙搬运8000kg所用的时间为 再根据甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等列方程 解答:甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,所以 故选B. 8.(2016·山西)将抛物线向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( D ) A. B. C. D. 考点:抛物线的平移 分析:先将一般式化为顶点式,根据左加右减,上加下减来平移 解答:将抛物线化为顶点式为:,左平移3个单位,再向上平移5个单位 得到抛物线的表达式为 故选D. 9.(2016·山西)如图,在ABCD中,AB为的直径,与DC相切于点E,与AD相交于点F,已知AB=12,,则的长为( C ) A. B. C. D. 考点:切线的性质,求弧长 分析:如图连接OF,OE 由切线可知,故由平行可知 由OF=OA,且,所以所以△OFA为等 边三角形∴, 从而可以得出所对的圆心角然后根据弧长公式即可求出 解答: r=12÷2=6 ∴= 故选C 10.(2016·山西)宽与长的比是(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD,BC的中点E,F,连接EF;以点F为圆心,以FD为半径画弧,交BC的延长线与点G;作,交AD的延长线于点H.则图中下列矩形是黄金矩形的是( D ) A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH 考点:黄金分割的识别 分析:由作图方法可知DF=CF,所以CG=,且GH=CD=2CF 从而得出黄金矩形 解答:CG=,GH=2CF ∴ ∴矩形DCGH是黄金矩形 选D. 二、填空题(本大题共5个小题,每小题3分,共15分) 11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 (3,0) . 考点:坐标的确定 分析:根据双塔西街点的坐标为(0,-1),可知大南 门为坐标原点,从而求出太原火车站的点(正 好在网格点上)的坐标 解答:太原火车站的点(正好在网格点上)的坐标 (3,0) 12.(2016·山西)已知点(m-1,),(m-3,)是反比例函数图象上的两点,则 > (填“>”或“=”或“<”) 考点:反比函数的增减性 分析:由反比函数m<0,则图象在第二四象限分别都是y随着x的增大而增大 ∵m<0,∴m-1<0,m-3<0,且m-1>m-3,从而比较y的大小 解答:在反比函数中,m<0,m-1<0,m-3<0,在第四象限y随着x的增大而增大 且m-1>m-3,所以 > 13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有(4n+1)个涂有阴影的小正方形(用含有n的代数式表示). 考点:找规律 分析:由图可知,涂有阴影的正方形有5+4(n-1)=4n+1个 解答:(4n+1) 14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 考点:树状图或列表求概率 分析:列表如图: 1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3 (3,1) (3,2) (3,3) 解答:由表可知指针指向的数都是奇数的概率为 15.(2016·山西)如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,连接AD,BE⊥AB,AE是的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则HG的长为 考点:勾股定理,相似,平行线的性质,角平分线; 分析:由勾股定理求出DA, 由平行得出,由角平分得出 从而得出,所以HE=HA. 再利用△DGH∽△DCA即可求出HE, 从而求出HG 解答:如图(1)由勾股定理可得 DA= 由 AE是的平分线可知 由CD⊥AB,BE⊥AB,EH⊥DC可知四边形GEBC为矩 形,∴HE∥AB,∴ ∴ 故EH=HA 设EH=HA=x 则GH=x-2,DH= ∵HE∥AC ∴△DGH∽△DCA ∴即 解得x= 故HG=EH-EG=-2= 三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(2016·山西)(本题共2个小题,每小题5分,共10分) (1)计算: 考点:实数的运算,负指数幂,零次幂 分析:根据实数的运算,负指数幂,零次幂三个考点.针对每个考点分别进行计算,然后根 据实数的运算法则求得计算结果. 解答:原=9-5-4+1 ……………………………(4分) =1. ……………………………(5分) (2)先化简,在求值:,其中x=-2. 考点:分式的化简求值 分析:先把分子分母因式分解,化简后进行减法运算 解答:原式= ……………………………(2分) = ……………………………(3分) = ……………………………(4分) 当x=-2时,原式= ……………………(5分) 17.(2016·山西)(本题7分)解方程: 考点:解一元二次方程 分析:方法一:观察方程,可先分解因式,然后提取x-3,利用公式法求解 方法二:将方程化为一般式,利用公式法求解 解答:解法一: 原方程可化为 ……………………………(1分) . ……………………………(2分) . ……………………………(3分) . ……………………………(4分) ∴ x-3=0或x-9=0. ……………………………(5分) ∴ ,. ……………………………(7分) 解法二: 原方程可化为 ……………………………(3分) 这里a=1,b=-12,c=27. ∵ ∴. ……………………………(5分) 因此原方程的根为 ,. ……………………………(7分) 18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整). (1)补全条形统计图和 扇形统计图; (2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人? (3)要从这些被调查的 学生中随机抽取一人进 行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 考点:条形统计图,扇形统计图,用样本估计总体,简单概率 分析:(1)利用条形和扇形统计图相互对应求出总体,再分别计算即可 (2)由扇形统计图可知对“工业设计”最感兴趣的学生有30%,再用整体1800乘以 30% (3)由扇形统计图可知 解答:(1)补全的扇形统计图和条形统计图如图所示 (2)1800×30%=540(人) ∴估计该校对“工业设计”最感兴趣的学生是540人 (3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修” 最感兴趣的学生的概率是 0.13(或13%或) 19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务: 阿基米德折弦定理 阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子. 阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理. 阿基米德折弦定理:如图1,AB和BC是的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD. 下面是运用“截长法”证明CD=AB+BD的部分证明过程. 证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG. ∵M是的中点, ∴MA=MC ... 任务:(1)请按照上面的证明思路,写出该证明的剩余部分; (2)填空:如图(3),已知等边△ABC内接于,AB=2,D为上一点, ,AE⊥BD与点E,则△BDC的长是 . 考点:圆的证明 分析:(1)已截取CG=AB ∴只需证明BD=DG 且MD⊥BC,所以需证明MB=MG 故证明△MBA≌△MGC即可 (2)AB=2,利用三角函数可得BE= 由阿基米德折弦定理可得BE=DE+DC 则△BDC周长=BC+CD+BD=BC+DC+DE+BE =BC+(DC+DE)+BE =BC+BE+BE =BC+2BE 然后代入计算可得答案 解答:(1)证明:又∵, …………………(1分) ∴ △MBA≌△MGC. …………………(2分) ∴MB=MG. …………………(3分) 又∵MD⊥BC,∵BD=GD. …………………(4分) ∴CD=CG+GD=AB+BD. …………………(5分) (2)填空:如图(3),已知等边△ABC内接于,AB=2, D为 上 一点, ,AE⊥BD与点E,则△BDC 的长是 . 20.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货 且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种 销售方案(客户只能选择其中一种方案): 方案A:每千克5.8元,由基地免费送货. 方案B:每千克5元,客户需支付运费2000元. (1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式; (2)求购买量x在什么范围时,选用方案A比方案B付款少; (3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案. 考点: 一次函数的应用 分析:(1)根据数量关系列出函数表达式即可 (2)先求出方案A应付款y与购买量x的函数关系为 方案B 应付款y与购买量x的函数关系为 然后分段求出哪种方案付款少即可 (3)令y=20000,分别代入A方案和B方案的函数关系式中,求出x,比大小. 解答:(1)方案A:函数表达式为. ………………………(1分) 方案B:函数表达式为 ………………………(2分) (2)由题意,得. ………………………(3分) 解不等式,得x<2500 ………………………(4分) ∴当购买量x的取值范围为时,选用方案A 比方案B付款少. ………………………(5分) (3)他应选择方案B. ………………………(7分) 21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号) 考点:三角函数的应用 分析:过点A作,垂足为G,利用三角函数求出CG,从 而求出GD,继而求出CD. 连接FD并延长与BA的延长线交于点H,利用三角函数求出 CH,由图得出EH,再利用三角函数值求出EF 解答:过点A作,垂足为G.…………(1分) 则,在Rt中, .…………(2分) 由题意,得.…………(3分) (cm).…(4分) 连接FD并延长与BA的延长线交于点H.…(5分) 由题意,得.在Rt中, .……………………(6分) .………(7分) 在Rt中,(cm).……………(9分) 答:支撑角钢CD的长为45cm,EF的长为cm.……………………(10分) 22.(2016·山西)(本题12分)综合与实践 问题情境 在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD()沿对角线AC剪开,得到和. 操作发现 (1)将图1中的以A为旋转中心, 逆时针方向旋转角,使 , 得到如图2所示的,分别延长BC 和交于点E,则四边形的 状是 菱形 ;……………(2分) (2)创新小组将图1中的以A为 旋转中心,按逆时针方向旋转角 ,使,得到如图3所 示的,连接DB,,得到四边形,发现它是矩形.请你证明这个论; (3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将沿着射线DB方向平移acm,得到,连接,,使四边形恰好为正方形,求a的值.请你解答此问题; (4)请你参照以上操作,将图1中的在同一平面内进行一次平移,得到,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明. 考点:几何综合,旋转实际应用,平移的实际应用,旋转的性质,平移的性质,菱形的判定, 矩形的判定正方形的判定 分析:(1)利用旋转的性质和菱形的判定证明 (2)利用旋转的性质以及矩形的判定证明 (3)利用平移行性质和正方形的判定证明,需注意射线这个条件,所以需要分两种情 况当点在边上和点在边的延长线上时. (4)开放型题目,答对即可 解答:(1)菱形 (2)证明:作于点E.…………………………………………(3分) 由旋转得,. 四边形ABCD是菱形,,,,,同理,,又, 四边形是平行四边形,…………………(4分) 又,,, ∴四边形是矩形…………………………………………(5分) (3)过点B作,垂足为F,, . 在Rt 中,, 在和中,, . ∽,,即,解得, ,,.…………………(7分) 当四边形恰好为正方形时,分两种情况: ①点在边上..…………………(8分) ②点在边的延长线上,.……………(9分) 综上所述,a的值为或. (4):答案不唯一. 例:画出正确图形.……………………………………(10分) 平移及构图方法:将沿着射线CA方向平移,平移距离为的长度,得到, 连接.………………………(11分) 结论:四边形是平行四边形……(12分) 23.(2016·山西)(本题14分)综合与探究 如图,在平面直角坐标系中,已知抛物线与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8). (1)求抛物线的函数表达式,并分别求出点B和点E的坐标; (2)试探究抛物线上是否存在点F,使≌,若存在,请直接写出点F的坐标;若不存在,请说明理由; (3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,是等腰三角形. 考点:求抛物线的解析式,求点坐标,全等构成,等腰三角形的构 成 分析:(1)将A,D的坐标代入函数解析式,解二元一次方程即可求出函数表达式 点B坐标:利用抛物线对称性,求出对称轴结合A点坐标即可求出B点坐标 点E坐标:E为直线l和抛物线对称轴的交点,利用D点坐标求出l表达式,令 其横坐标为,即可求出点E的坐标 (2)利用全等对应边相等,可知FO=FC,所以点F肯定在OC的垂直平分线上,所 以点F的纵坐标为-4,带入抛物线表达式,即可求出横坐标 (3)根据点P在y轴负半轴上运动,∴分两种情况讨论,再结合相似求解 解答:(1)抛物线经过点A(-2,0),D(6,-8), 解得…………………………………(1分) 抛物线的函数表达式为……………………………(2分) ,抛物线的对称轴为直线.又抛物线与x轴交于A,B两点,点A的坐标为(-2,0).点B的坐标为(8,0)…………………(4分) 设直线l的函数表达式为.点D(6,-8)在直线l上,6k=-8,解得. 直线l的函数表达式为………………………………………………………(5分) 点E为直线l和抛物线对称轴的交点.点E的横坐标为3,纵坐标为,即点E的坐标为(3,-4)……………………………………………………………………(6分) (2)抛物线上存在点F,使≌. 点F的坐标为()或().……………………………………(8分) (3)解法一:分两种情况: ①当时,是等腰三角形. 点E的坐标为(3,-4),,过点E作直线ME//PB,交y轴于点M,交x轴于点H,则,……………………………………(9分) 点M的坐标为(0,-5). 设直线ME的表达式为,,解得,ME的函数表达式为,令y=0,得,解得x=15,点H的坐标为(15,0)…(10分) 又MH//PB,,即,……………………………(11分) ②当时,是等腰三角形. 当x=0时,,点C的坐标为(0,-8), ,OE=CE,,又因为,, ,CE//P- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 山西省 中考 数学试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文