四川省广元市2019年中考数学真题试题(含解析).doc
《四川省广元市2019年中考数学真题试题(含解析).doc》由会员分享,可在线阅读,更多相关《四川省广元市2019年中考数学真题试题(含解析).doc(19页珍藏版)》请在咨信网上搜索。
2019年四川省广元市中考数学试卷 一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的. 1.(3分)﹣8的相反数是( ) A.﹣ B.﹣8 C.8 D. 2.(3分)下列运算中正确的是( ) A.a5+a5=a10 B.a7÷a=a6 C.a3•a2=a6 D.(﹣a3)2=﹣a6 3.(3分)函数y=的自变量x的取值范围是( ) A.x>1 B.x<1 C.x≤1 D.x≥1 4.(3分)如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( ) A.5 B.6 C.7 D.9 5.(3分)我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( ) A. B. C. D. 6.(3分)如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为( ) A.2 B.4 C.2 D.4.8 7.(3分)不等式组的非负整数解的个数是( ) A.3 B.4 C.5 D.6 8.(3分)如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( ) A. B. C. D. 9.(3分)如图,在正方形ABCD的对角线AC上取一点E.使得∠CDE=15°,连接BE并延长BE到F,使CF=CB,BF与CD相交于点H,若AB=1,有下列结论:①BE=DE;②CE+DE=EF;③S△DEC=﹣;④=2﹣1.则其中正确的结论有( ) A.①②③ B.①②③④ C.①②④ D.①③④ 10.(3分)如图,过点A0(0,1)作y轴的垂线交直线l:y=x于点A1,过点A1作直线l的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A546,…,其面积分别记为S1,S2,S3,…,则S100为( ) A.()100 B.(3)100 C.3×4199 D.3×2395 二、填空题(每小颕3分,共15分)把正确答案直接填写在答题卡对应题日的横线上. 11.(3分)分解因式:a3﹣4a= . 12.(3分)若关于x的一元二次方程ax2﹣x﹣=0(a≠0)有两个不相等的实数根,则点P(a+1,﹣a﹣3)在第 象限. 13.(3分)如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC绕点C逆时针旋转60°得到△DEC,连接BD,则BD2的值是 . 14.(3分)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是 . 15.(3分)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是 . 三、解答题(共75分)要求写出必要的解答步骤或证明过程. 16.(6分)计算:|﹣2|+(π﹣2019)0﹣(﹣)﹣1+3tan30° 17.(6分)先化简:(﹣x﹣1)•,再从1,2,3中选取一个适当的数代入求值. 18.(7分)如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点E,F分别是边BC,AC的中点.求证:DF=BE. 19.(8分)如今很多初中生喜欢购头饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D.非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题 (1)这个班级有多少名同学?并补全条形统计图; (2)若该班同学每人每天只饮用一种饮品(每种仅限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元? 饮品名称 白开水 瓶装矿泉水 碳酸饮料 非碳酸饮料 平均价格(元/瓶) 0 2 3 4 (3)为了养成良好的生活习惯,班主任决定在饮用白开水的5名班委干部(其中有两位班长记为A,B,其余三位记为C,D,E)中随机抽取2名班委干部作良好习惯监督员,请用列表法或画树状图的方法求出恰好抽到2名班长的概率. 20.(8分)某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同. (1)求甲、乙两种水果的单价分别是多少元? (2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少? 21.(8分)如图,某海监船以60海里/时的速度从A处出发沿正西方向巡逻,一可疑船只在A的西北方向的C处,海监船航行1.5小时到达B处时接到报警,需巡査此可疑船只,此时可疑船只仍在B的北偏西30°方向的C处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/时的速度追击,在D处海监船追到可疑船只,D在B的北偏西60°方同.(以下结果保留根号) (1)求B,C两处之问的距离; (2)求海监船追到可疑船只所用的时间. 22.(10分)如图,在平闻直角坐标系中,直线AB与y轴交于点B(0,7),与反比例函数y=在第二象限内的图象相交于点A(﹣1,a). (1)求直线AB的解析式; (2)将直线AB向下平移9个单位后与反比例函数的图象交于点C和点E,与y轴交于点D,求△ACD的面积; (3)设直线CD的解析式为y=mx+n,根据图象直接写出不等式mx+n≤的解集. 23.(10分)如图,AB是⊙O的直径,点P是BA延长线上一点,过点P作⊙O的切线PC,切点是C,过点C作弦CD⊥AB于E,连接CO,CB. (1)求证:PD是⊙O的切线; (2)若AB=10,tanB=,求PA的长; (3)试探究线段AB,OE,OP之间的数量关系,并说明理由. 24.(12分)如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,过A,B两点的抛物线y=ax2+bx+c与x轴交于点C(﹣1,0). (1)求抛物线的解析式; (2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作EF∥BC,交AB于点F,当△BEF的面积是时,求点E的坐标; (3)在(2)的结论下,将△BEF绕点F旋转180°得△B′E′F,试判断点E′是否在抛物线上,并说明理由. 2019年四川省广元市中考数学试卷 参考答案与试题解析 一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的. 1.【解答】解:﹣8的相反数是8, 故选:C. 2.【解答】解:A.a5+a5=2a5,故选项A不合题意; B.a7÷a=a6,故选项B符合题意; C.a3•a2=a5,故选项C不合题意; D.(﹣a3)2=a6,故选项D不合题意. 故选:B. 3.【解答】解:根据题意得x﹣1≥0, 解得x≥1. 故选:D. 4.【解答】解:∵一组数据6,7,x,9,5的平均数是2x, ∴6+7+x+9+5=2x×5, 解得:x=3, 则从大到小排列为:3,5,6,7,9, 故这组数据的中位数为:6. 故选:B. 5.【解答】解:该几何体的俯视图是: . 故选:A. 6.【解答】解:∵AB为直径, ∴∠ACB=90°, ∴BC===3, ∵OD⊥AC, ∴CD=AD=AC=4, 在Rt△CBD中,BD==2. 故选:C. 7.【解答】解:, 解①得:x>﹣2, 解②得x≤3, 则不等式组的解集为﹣2<x≤3. 故非负整数解为0,1,2,3共4个 故选:B. 8.【解答】解:分三种情况: ①当P在AB边上时,如图1, 设菱形的高为h, y=AP•h, ∵AP随x的增大而增大,h不变, ∴y随x的增大而增大, 故选项C和D不正确; ②当P在边BC上时,如图2, y=AD•h, AD和h都不变, ∴在这个过程中,y不变, 故选项B不正确; ③当P在边CD上时,如图3, y=PD•h, ∵PD随x的增大而减小,h不变, ∴y随x的增大而减小, ∵P点从点A出发沿在A→B→C→D路径匀速运动到点D, ∴P在三条线段上运动的时间相同, 故选项A正确; 故选:A. 9.【解答】证明:①∵四边形ABCD是正方形, ∴AB=AD,∠ABC=∠ADC=90°,∠BAC=∠DAC=∠ACB=∠ACD=45°. 在△ABE和△ADE中, , ∴△ABE≌△ADE(SAS), ∴BE=DE,故①正确; ②在EF上取一点G,使EG=EC,连结CG, ∵△ABE≌△ADE, ∴∠ABE=∠ADE. ∴∠CBE=∠CDE, ∵BC=CF, ∴∠CBE=∠F, ∴∠CBE=∠CDE=∠F. ∵∠CDE=15°, ∴∠CBE=15°, ∴∠CEG=60°. ∵CE=GE, ∴△CEG是等边三角形. ∴∠CGE=60°,CE=GC, ∴∠GCF=45°, ∴∠ECD=GCF. 在△DEC和△FGC中, , ∴△DEC≌△FGC(SAS), ∴DE=GF. ∵EF=EG+GF, ∴EF=CE+ED,故②正确; ③过D作DM⊥AC交于M, 根据勾股定理求出AC=, 由面积公式得:AD×DC=AC×DM, ∴DM=, ∵∠DCA=45°,∠AED=60°, ∴CM=,EM=, ∴CE=CM﹣EM=﹣ ∴S△DEC=CE×DM=﹣,故③正确; ④在Rt△DEM中,DE=2ME=, ∵△ECG是等边三角形, ∴CG=CE=﹣, ∵∠DEF=∠EGC=60°, ∴DE∥CG, ∴△DEH∽△CGH, ∴===+1,故④错误; 综上,正确的结论有①②③, 故选:A. 10.【解答】解:∵点A0的坐标是(0,1), ∴OA0=1, ∵点A1在直线y=x上, ∴OA1=2,A0A1=, ∴OA2=4, ∴OA3=8, ∴OA4=16, 得出OAn=2n, ∴AnAn+1=2n•, ∴OA198=2198,A198A199=2198•, ∵S1=(4﹣1)•=, ∵A2A1∥A200A199, ∴△A0A1A2∽△A198A199A200, ∴=()2, ∴S=2396•=3×2395 故选:D. 二、填空题(每小颕3分,共15分)把正确答案直接填写在答题卡对应题日的横线上. 11.【解答】解:原式=a(a2﹣4) =a(a+2)(a﹣2). 故答案为:a(a+2)(a﹣2) 12.【解答】解:∵关于x的一元二次方程ax2﹣x﹣=0(a≠0)有两个不相等的实数根, ∴, 解得:a>﹣1且a≠0. ∴a+1>0,﹣a﹣3<0, ∴点P(a+1,﹣a﹣3)在第四象限. 故答案为:四. 13.【解答】解:如图,连接AD,设AC与BD交于点O, 解:如图,连接AM, 由题意得:CA=CD,∠ACD=60° ∴△ACD为等边三角形, ∴AD=CD,∠DAC=∠DCA=∠ADC=60°; ∵∠ABC=90°,AB=BC=2, ∴AC=CD=2, ∵AB=BC,CD=AD, ∴BD垂直平分AC, ∴BO=AC=,OD=CD•sin60°=, ∴BD=+ ∴BD2=(+)2=8+4, 故答案为8+4 14.【解答】解:过O作OM⊥AC于M,延长MO交⊙O于P, 则此时,点P到AC距离的最大,且点P到AC距离的最大值=PM, ∵OM⊥AC,∠A=∠BPC=60°,⊙O的半径为6, ∴OP=OA=6, ∴OM=OA=×6=3, ∴PM=OP+OM=6+3, ∴则点P到AC距离的最大值是6+3, 故答案为:6+3. 15.【解答】解:将(﹣1,0)与(0,2)代入y=ax2+bx+c, ∴0=a﹣b+c,2=c, ∴b=a+2, ∵>0,a<0, ∴b>0, ∴a>﹣2, ∴﹣2<a<0, ∴M=4a+2(a+2)+2 =6a+6 =6(a+1) ∴﹣6<M<6, 故答案为:﹣6<M<6; 三、解答题(共75分)要求写出必要的解答步骤或证明过程. 16.【解答】解:原式=2﹣+1﹣(﹣3)+3×=2﹣+1+3+=6. 17.【解答】解:原式=[﹣﹣]• =• =, 当x=1,2时分式无意义, 将x=3,代入原式得: 则原式==﹣5. 18.【解答】证明:∵∠BAC=90°, ∴∠DAF=90°, ∵点E,F分别是边BC,AC的中点, ∴AF=FC,BE=EC,FE是△ABC的中位线, ∴FE=AB,FE∥AB, ∴∠EFC=∠BAC=90°, ∴∠DAF=∠EFC, ∵AD=AB, ∴AD=FE, 在△ADF和△FEC中,, ∴△ADF≌△FEC(SAS), ∴DF=EC, ∴DF=BE. 19.【解答】解:(1)这个班级的学生人数为15÷30%=50(人), 选择C饮品的人数为50﹣(10+15+5)=20(人), 补全图形如下: (2)=2.2(元), 答:该班同学每天用于饮品的人均花费是2.2元; (3)画树状图如下: 由树状图知共有20种等可能结果,其中恰好抽到2名班长的有2种结果, 所以恰好抽到2名班长的概率为=. 20.【解答】解:(1)设甲种水果的单价是x元,则乙种水果的单价是(x+4)元, , 解得,x=16, 经检验,x=16是原分式方程的解, ∴x+4=20, 答:甲、乙两种水果的单价分别是16元、20元; (2)设购进甲种水果a千克,则购进乙种水果(200﹣a)千克,利润为w元, w=(20﹣16)a+(25﹣20)(200﹣a)=﹣a+1000, ∵甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元, ∴, 解得,145≤a≤150, ∴当a=145时,w取得最大值,此时w=855,200﹣a=55, 答:水果商进货甲种水果145千克,乙种水果55千克,才能获得最大利润,最大利润是855元. 21.【解答】解:(1)作CE⊥AB于E,如图1所示: 则∠CEA=90°, 由题意得:AB=60×1.5=90(海里),∠CAB=45°,∠CBN=30°,∠DBN=60°, ∴△ACE是等腰直角三角形,∠CBE=60°, ∴CE=AE,∠BCE=30°, ∴CE=BE,BC=2BE, 设BE=x,则CE=x,AE=BE+AB=x+90, ∴x=x+90, 解得:x=45+45, ∴BC=2x=90+90; 答:B,C两处之问的距离为(90+90)海里; (2)作DF⊥AB于F,如图2所示: 则DF=CE=x=135+45,∠DBF=90°﹣60°=30°, ∴BD=2DF=270+90, ∴海监船追到可疑船只所用的时间为=3+(小时); 答:海监船追到可疑船只所用的时间为(3+)小时. 22.【解答】解:(1))∵点A(﹣1,a)在反比例函数y=的图象上, ∴a==8, ∴A(﹣1,8), ∵点B(0,7), ∴设直线AB的解析式为y=kx+7, ∵直线AB过点A(﹣1,8), ∴8=﹣k+7,解得k=﹣1, ∴直线AB的解析式为y=﹣x+7; (2)∵将直线AB向下平移9个单位后得到直线CD的解析式为y=﹣x﹣2, ∴D(0,﹣2), ∴BD=7+2=9, 联立,解得或, ∴C(﹣4,2),E(2,﹣4), 连接AC,则△CBD的面积=×9×4=18, 由平行线间的距离处处相等可得△ACD与△CDB面积相等, ∴△ACD的面积为18. (3)∵C(﹣4,2),E(2,﹣4), ∴不等式mx+n≤的解集是:﹣4<x<0或x>2. 23.【解答】解:(1)证明:连接OD, ∵PC是⊙O的切线, ∴∠PCO=90°,即∠PCD+∠OCD=90°, ∵OA⊥CD ∴CE=DE ∴PC=PD ∴∠PDC=∠PCD ∵OC=OD ∴∠ODC=∠OCD, ∴∠PDC+∠ODC=∠PCD+∠OCD=90°, ∴PD是⊙O的切线. (2)如图2,连接AC, ∵AB是⊙O的直径, ∴∠ACB=90°, ∴tanB== 设AC=m,BC=2m,则由勾股定理得:m2+(2m)2=102,解得:m=, AC=2,BC=4, ∵CE×AB=AC×BC,即10CE=2×4, ∴CE=4,BE=8,AE=2 在Rt△OCE中,OE=OA﹣AE=3,OC=5, ∴CE===4, ∵ ∴OP×OE=OC×OC,即3OP=5×5, ∴OP=,PA=OP﹣OA=﹣5=. (3)AB2=4OE•OP 如图2,∵PC切⊙O于C, ∴∠OCP=∠OEC=90°, ∴△OCE∽△OPC ∴,即OC2=OE•OP ∵OC=AB ∴ 即AB2=4OE•OP. 24.【解答】解:(1)y=﹣x+4…①, 令x=0,y=4,令y=0,则x=4, 故点A、B的坐标分别为(4,0)、(0,4), 抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4), 即﹣4a=4,解得:a=﹣1, 故抛物线的表达式为:y=﹣x2+3x+4…②; (2)设点E(m,0), 直线BC表达式中的k值为4,EF∥BC, 则直线EF的表达式为:y=4x+n, 将点E坐标代入上式并解得: 直线EF的表达式为:y=4x﹣4m…③, 联立①③并解得:x=(m+1), 则点F(,), S△BEF=S△OAB﹣S△OBE﹣S△AEF=×4×4﹣×4m﹣(4﹣m)×=, 解得:m=, 故点E(,0)、点E(2,2); (3)△BEF绕点F旋转180°得△B′E′F,则点E′(,4), 当x=时,y=﹣x2+3x+4=﹣()2+3×+4≠4, 故点E′不在抛物线上. 19- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 广元市 2019 年中 数学 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文