浙江省嘉兴市2018年中考数学真题试题(含解析).doc
《浙江省嘉兴市2018年中考数学真题试题(含解析).doc》由会员分享,可在线阅读,更多相关《浙江省嘉兴市2018年中考数学真题试题(含解析).doc(24页珍藏版)》请在咨信网上搜索。
浙江省嘉兴市2018年中考数学真题试题 一、选择题(共10题;共20分) 1.下列几何体中,俯视图为三角形的是( ) A. B. C. D. 2.2018年5月25日,中国探月工程的“桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km.数1500000用科学记数法表示为( ) A. 15×105 B. 1.5×106 C. 0.15×107 D. 1.5×105 3.2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是( ) A. 1月份销量为2.2万辆 B. 从2月到3月的月销量增长最快 C. 4月份销量比3月份增加了1万辆 D. 1-4月新能源乘用车销量逐月增加 4.不等式1-x≥2的解在数轴上表示正确的是( ) A. B. C. D. 5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( ) A. B. C. D. 6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是( ) A. 点在圆内 B. 点在圆上 C. 点在圆心上 D. 点在圆上或圆内 7.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是;画Rt△ABC,使∠ACB=90°,BC= ,AC=b,再在斜边AB上截取BD= 。则该方程的一个正根是( ) A.AC的长 B.AD的长 C.BC的长 D.CD的长 8.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是( ) A. B. C. D. 9.如图,点C在反比例函数 (x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为( ) A. 1 B. 2 C. 3 D. 4 10.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A.甲 B.甲与丁 C.丙 D.丙与丁 二、填空题(共6题;共7分) 11.分解因式m2-3m=________。 12.如图,直线l1∥l2∥l3 , 直线AC交l1 , l2 , l3 , 于点A,B,C;直线DF交l1 , l2 , l3于点D,E,F,已知 ,则 =________。 13.小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢,”小红赢的概率是________,据此判断该游戏________(填“公平”或“不公平”)。 14.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________ cm。 15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检x个,则根据题意,可列处方程:________。 16.如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是________。 三、解答题(共8题;共90分) 17. (1)计算:2( -1)+|-3|-( -1)0; (2)化简并求值 ,其中a=1,b=2。 18.用消元法解方程组 时,两位同学的解法如下: (1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”。 (2)请选择一种你喜欢的方法,完成解答。 19.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF。 求证:△ABC是等边三角形。 20.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm-185mm的产品为合格),随机各轴取了20个样品进行测,过程如下:收集数据(单位:mm): 甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180。 乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183。 整理数据: 分析数据: 应用数据: (1)计算甲车间样品的合格率。 (2)估计乙车间生产的1000个该款新产品中合格产品有多少个? (3)结合上述数据信息,请判断个车间生产的新产品更好,并说明理由, 21.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与动时间t(s)之间的关系如图2所示。 (1)根据函数的定义,请判断变量h是否为关于t的函数? (2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义, ②秋千摆动第一个来回需多少时间? 22.如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°。当点P位于初始位置P0时,点D与C重合(图2),根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳。 (1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m) (2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75, ≈1.41, ≈1.73) 23.已知,点M为二次函数y=-(x-b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B。 (1)判断顶点M是否在直线y=4x+1上,并说明理由。 (2)如图1,若二次函数图象也经过点A,B,且mx+5>-(x-b)2+4b+1,根据图象,写出x的取值范围。 (3)如图2,点A坐标为(5,0),点M在△AOB内,若点C( ,y1),D( ,y2)都在二次函数图象上,试比较y1与y2的大小。 24.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。 (1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是“等高底”三角形请说明理由。 (2)问题探究:如图2,△ABC是“等高底”三角形,BC是“等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA'交直线BC于点D.若点B是△AA'C的重心,求 的值. (3)应用拓展:如图3.已知l1∥l2 , l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的 倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,AC所在直线交l2于点D.求CD的值。 答案 一、选择题 1.【答案】C 【考点】简单几何体的三视图 【解析】【解答】A、圆锥的俯视图是一个圆并用圆心,故A不符合题意; B、长方体的俯视图是一个长方形,故B不符合题意; C、直三棱柱的俯视图是三角形,故C符合题意; D、四棱锥的俯视图是一个四边形,故D不符合题意; 故答案为C。 【分析】俯视图指的是在水平投影面上的正投影,通俗的讲是从上面往下面看到的图形. 2.【答案】B 【考点】科学记数法—表示绝对值较大的数 【解析】【解答】解:1500000=1.5×1000000=1.5×106 故答案为B。 【分析】考查用科学记数表示绝对值较大的数,将数表示形a×10n , 其中1≤|a|<10,n是正整数. 3.【答案】D 【考点】折线统计图 【解析】【解答】解:A、显然正确,故A不符合题意; B、2月份到3月份的线段最陡,所以2月到3月的月销量增长最快,说法正确,故B不符合题意; C、4月份销量为4.3万辆,3月份销量为3.3万量,4.3-3.3=1(万辆),说法正确,故不符合题意; D、1月到2月是减少的,说法错误,故D符合题意; 故答案为D 【分析】A、正确读取1月份的数据,即可知;B、根据折线统计图看增长快慢,只需要看各线段的陡的程度,线段越陡,则越快;C、正确读取4月、3月的数据,即可知;D、观察折线的趋势,逐月增加的应该是上升的折线,而图中有下降。 4.【答案】A 【考点】解一元一次不等式 【解析】【解答】解:因为1-x≥2,3≥x, 所以不等式的解为x≤3, 故答案为A。 【分析】解在不等式的解,并在数轴上表示,不等号是“≥”或“≤”的时候,点要打实心 5.【答案】A 【考点】剪纸问题 【解析】【解答】解:沿虚线剪开以后,剩下的图形先向右上方展开,缺失的部分是一个等腰直角三角形,用直角边与正方形的边是分别平行的,再沿着对角线展开,得到图形A。 故答案为A。 【分析】根据对称的性质,用倒推法去展开这个折纸。 6.【答案】D 【考点】点与圆的位置关系,反证法 【解析】【解答】解:点与圆的位置关系只有三种:点在圆内、点在圆上、点在圆外, 如果点不在圆外,那么点就有可能在圆上或圆内 故答案为D 【分析】运用反证法证明,第一步就要假设结论不成立,即结论的反面,要考虑到反面所有的情况。 7.【答案】B 【考点】一元二次方程的根,勾股定理 【解析】【解答】解:在Rt△ABC中,由勾股定理可得AC2+BC2=AB2=(AD+BD)2 , 因为AC=b,BD=BC=, 所以b2+=, 整理可得AD2+aAD=b2 , 与方程x2+ax=b2相同, 因为AD的长度是正数,所以AD是x2+ax=b2的一个正根 故答案为B。 【分析】由勾股定理不难得到AC2+BC2=AB2=(AD+BD)2 , 代入b和a即可得到答案 8.【答案】C 【考点】平行四边形的性质,菱形的判定,作图—尺规作图的定义 【解析】【解答】解:A、作的辅助线AC是BD的垂直平分线,由平行四边形中心对称图形的性质可得AC与BD互相平分且垂直,则四边形ABCD是菱形,故A不符合题意; B、由辅助线可得AD=AB=BC,由平行四边形的性质可得AD//BC,则四边形ABCD是菱形,故B不符合题意; C、辅助线AB、CD分别是原平行四边形一组对角的角平分线,只能说明四边形ABCD是平行四边形,故C符合题意; D、此题的作法是:连接AC,分别作两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD, 由AD//BC,得∠BAD+∠ABC=180°, ∠BAC=∠DAC=∠ACB=∠ACD, 则AB=BC,AD =CD,∠BAD=∠BCD, 则∠BCD+∠ABC=180°, 则AB//CD, 则四边形ABCD是菱形 故D不符合题意; 故答案为C 【分析】首先要理解每个图的作法,作的辅助线所具有的性质,再根据平行四边形的性质和菱形的判定定理判定 9.【答案】D 【考点】反比例函数系数k的几何意义 【解析】【解答】解:过点C作CD垂直于y轴,垂足为D,作CE垂直于x轴,垂足为E,则∠AOB=∠CDB=∠CEA=90° 又因为AB=BC,∠ABO=∠CBD, 所以△ABO≅△CBD, 所以S△CBD=S△ABO=1, 因为∠CDB=∠CEA=90°,∠BAO=∠CAE, 所以△ABO~△ACE, 所以,则S△ACE=4, 所以S矩形ODCE=S△CBD+S四边形OBCE=S△ACE=4, 则k=4, 故答案为D 【分析】根据反比例函数k的几何意义,可过C点作CD垂直于y轴,垂足为D,作CE垂直于x轴,垂足为E,即求矩形ODCE的面积 10.【答案】B 【考点】推理与论证 【解析】【解答】解:小组赛一共需要比赛场, 由分析可知甲是最高分,且可能是9或7分, 当甲是9分时,乙、丙、丁分别是7分、5分、3分, 因为比赛一场最高得分3分, 所以4个队的总分最多是6×3=18分, 而9+7+5+3>18,故不符合; 当甲是7分时,乙、丙、丁分别是5分、3分、1分,7+5+3+1<18,符合题意, 因为每人要参加3场比赛, 所以甲是2胜一平,乙是1胜2平,丁是1平2负, 则甲胜丁1次,胜丙1次,与乙打平1次, 因为丙是3分,所以丙只能是1胜2负, 乙另外一次打平是与丁, 则与乙打平的是甲、丁 故答案是B。 【分析】需要推理出甲、乙、丙、丁四人的分数:每个人都要比赛3场,要是3场全胜得最高9分,根据已知“甲、乙,丙、丁四队分别获得第一,二,三,四名”和“各队的总得分恰好是四个连续奇数”,可推理出四人的分数各是多少,再根据胜、平、负一场的分数去讨论打平的场数。 二、填空题 11.【答案】m(m-3) 【考点】提公因式法因式分解 【解析】【解答】解:原式=m2-3m=m·m-3·m=m(m-3) 故答案为m(m-3) 【分析】提取公因式m即可 12.【答案】2 【考点】平行线分线段成比例 【解析】【解答】解:由和BC=AC-AB, 则, 因为直线l1∥l2∥l3 , 所以=2 故答案为2 【分析】由和BC=AC-AB,可得的值;由平行线间所夹线段对应成比例可得 13.【答案】;不公平 【考点】游戏公平性,概率公式 【解析】【解答】解:抛硬币连续抛两次可能的情况:(正面,正面),(正面,反面),(反面,正面),(反面,反面),一共有4种, 而两次都是正面的只有一次,则P(两次都是正面)=< 所以该游戏是不公平的。 故答案为;不公平 【分析】可列举抛硬币连续抛两次可能的情况,得出两次都是正面的情况数,可求得小红赢的概率;游戏的公平是双方赢的概率都是 14.【答案】 【考点】垂径定理,切线的性质 【解析】【解答】解:如图,连结OD,OC,OC与AD交于点G,设直尺另一边为EF, 因为点D在量角器上的读数为60°, 所以∠AOD=120°, 因为直尺一边EF与量角器相切于点C, 所以OC⊥EF, 因为EF//AD, 所以OC⊥AD, 由垂径定理得AG=DG=AD=5 cm,∠AOG=∠AOD=60°, 在Rt△AOG中,AG=5 cm,∠AOG=60°, 则OG=cm,OC=OA=cm 则CG=OC-OG=cm. 【分析】因为直尺另一边EF与圆O相切于点C,连接OC,可知求直尺的宽度就是求CG=OC-OG,而OC=OA;OG和OA都在Rt△AOG中,即根据解直角三角形的思路去做:由垂定理可知AG=DG=AD=5cm,∠AOG=∠AOD=60°,从而可求答案。 15.【答案】 【考点】列分式方程 【解析】【解答】解:设甲每小时检x个,则乙每小时检测(x-20)个, 甲检测300个的时间为, 乙检测200个所用的时间为 由等量关系可得 故答案为 【分析】根据实际问题列方程,找出列方程的等量关系式:甲检测300个的时间=乙检测200个所用的时间×(1-10%),分别用未知数x表示出各自的时间即可 16.【答案】0或1<AF< 或4 【考点】矩形的性质,圆周角定理,切线的性质,直角三角形的性质 【解析】【解答】解:以EF为斜边的直角三角形的直角顶点P是以EF为直径的圆与矩形边的交点,取EF的中点O, (1)如图1,当圆O与AD相切于点G时,连结OG,此时点G与点P重合,只有一个点,此时AF=OG=DE=1; (2)如图2,当圆O与BC相切于点G,连结OG,EG,FG,此时有三个点P可以构成Rt△EFP, ∵OG是圆O的切线, ∴OG⊥BC ∴OG//AB//CD ∵OE=OF, ∴BG=CG, ∴OG=(BF+CE), 设AF=x,则BF=4-x,OG=(4-x+4-1)=(7-x), 则EF=2OG=7-x,EG2=EC2+CG2=9+1=10,FG2=BG2+BF2=1+(4-x)2 在Rt△EFG中,由勾股定理得EF2=EG2+FG2 , 得(7-x)2=10+1+(4-x)2,解得x= 所以当1<AF<时,以EF为直径的圆与矩形ABCD的交点(除了点E和F)只有两个; (3)因为点F是边AB上一动点: 当点F与A点重合时,AF=0,此时Rt△EFP正好有两个符合题意; 当点F与B点重合时,AF=4,此时Rt△EFP正好有两个符合题意; 故答案为0或1<AF<或4 【分析】学习了圆周角的推论:直径所对的圆周角是直角,可提供解题思路,不妨以EF为直径作圆,以边界值去讨论该圆与矩形ABCD交点的个数 三、解答题 17.【答案】(1)原式=4 -2+3-1=4 (2)原式= =a-b 当a=1,b=2时,原式=1-2=-1 【考点】实数的运算,利用分式运算化简求值 【解析】【分析】(1)按照实数的运算法则计算即可; (2)分式的化简当中,可先运算括号里的,或都运用乘法分配律计算都可 18.【答案】(1)解法一中的计算有误(标记略) (2)由①-②,得-3x=3,解得x=-1, 把x=-1代入①,得-1-3y=5,解得y=-2, 所以原方程组的解是 【考点】解二元一次方程组 【解析】【分析】(1)解法一运用的是加减消元法,要注意用①-②,即用方程①左边和右边的式子分别减去方程②左边和右边的式子; (2)解法二运用整体代入的方法达到消元的目的 19.【答案】∵AB=AC, ∴∠B=∠C. ∵DE⊥AB,DF⊥BC ∴∠DEA=∠DFC=Rt∠ ∴D为AC的中点, ∴DA=DC 又∴DF=DF ∴Rt△ADE≌Rt△CDF(HL) ∴∠A=∠C. ∴∠A=∠B=∠C. ∴△ABC是等边三角形. 【考点】全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定 【解析】【分析】根据AB=AC,可得出∠B=∠C.根据垂直的定义,可证得∠DEA=∠DFC,根据中点的定义可得出DA=DC,即可证明Rt△ADE≌Rt△CDF,就可得出∠A=∠C.从而可证得∠A=∠B=∠C,即可求证结论。 20.【答案】(1)甲车间样品的合格率为 ×100%=55% (2)∵乙车间样品的合格产品数为20-(1+2+2)=15(个), ∴乙车间样品的合格率为 ×100%=75%。 ∴乙车间的合格产品数为1000×75%=750(个). (3)①从样品合格率看,乙车间合格率比甲车间高,所以乙车间生产的新产品更好。②从样品的方差看,甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好. 【考点】数据分析 【解析】【分析】(1)由题意可知,合格的产品的条件为尺寸范围为176mm-185mm的产品,所以甲车间合格的产品数是(5+6),再除总个数即可; (2)需要先求出乙车间的产品的合格率;而合格产品数(a+b)的值除了可以样品数据中里数出来,也可以由20-(1+2+2)得到; (3)分析数据中的表格提供了甲、乙车间的平均数、众数、中位数和方差数据,根据它们的特点结合数据的大小进行比较及评价即可 21.【答案】(1)∵对于每一个摆动时间t,都有一个唯一的h的值与其对应, ∴变量h是关于t的函数。 (2)①h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度为0.5m ②2.8s. 【考点】函数的概念,函数值 【解析】【分析】(1)从函数的定义出发:一般地,在某个变化过程中,设有两个变量x,y,如果对于x的每个确定的值,y都有唯一确定的值,那么就说y是x的函数,x是自变量。h是否为关于t的函数:即表示t为自变量时,每一个t的值是否只对应唯一一个h的值,从函数的图象中即可得到答案; (2)①结合实际我们知道在t=0的时刻,秋千离地面最高;t=0.7的时刻,观察该点的纵坐标h的值即可;结合h表示高度的实际意义说明即可; ②结合荡秋千的经验,秋千先从一端的最高点下落到最低点,再荡到另一端的最高点,再返回到最低点,最后回到开始的一端,符合这一过程的即是0~2.8s。 22.【答案】(1)如图2,当点P位于初始位置P0时,CP0=2m。 如图3,10:00时,太阳光线与地面的夹角为65°,点P上调至P1处, ∠1=90°,∠CAB=90°, ∴∠AP1E=115°, ∴∠CPE=65°. ∵∠DP1E=20°, ∴∠CP1F=45° ∵CF=P1F=1m, ∴∠C=∠CP1F=45°, ∴△CP1F为等腰直角三角形, ∴CP1= m, P0P1=CP0-CP1=2- ≈0.6m, 即点P需从P0上调0.6m (2)如图4,中午12:00时,太阳光线与PE,地面都垂直,点P上调至P2处, ∴P2E∥AB ∵∠CAB=90°, ∴∠CP2E=90° ∵∠DP2E=20°, ∴∠CP2F=∠CP2E-∠DP2E=70° ∵CF=P2F=1m,得△CP2F为等腰三角形, ∴∠C=∠CP2F=70 过点F作FG⊥CP2于点G, ∴GP2=P2F·cos70°=1×0.34=0.34m ∴CP2=2GP2=0.68m, ∴P1P2=CP1-CP2= -0.68≈0.7 即点P在(1)的基础上还需上调0.7m。 【考点】等腰三角形的判定与性质,解直角三角形 【解析】【分析】(1)求P上升的高度,设上升后的点P为P1 , 即求P0P1=CP0-CP1的值,其中CP0=2,即求CP1的长度,由已知可得P1F=CF=1,且可已知求出∠C=45°,从而可得△CP1F为等腰直角三角形,由勾股定理求出CP1即可; (2)与(1)同理即求CP2的长度,因为△CP1F为等腰三角形,由三线合一定理,作底中的垂线,根据解直角三角形的方法求出底边的长即可 23.【答案】(1)∵点M坐标是(b,4b+1), ∴把x=b代入y=4x+1,得y=4b+1, ∴点M在直线y=4x+1上。 (2)如图1,∵直线y=mx+5与y轴交于点为B, ∴点B坐标为(0,5) 又∵B(0,5)在抛物线上, ∴5=-(0-b)2+4b+1,解得b=2 ∴二次函数的表达式为y=-(x-2)2+9 ∴当y=0时,得x1=5,x2=-1, ∴A(5,0). 观察图象可得,当mx+5>-(x-b)2+4b+1时, x的取值范围为x<0或x>5. (3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于点F,而直线AB表达式为y=-x+5, 解方程组 ,得 ∴点E( , ),F(0,1) ∵点M在△AOB内, ∴0<b< . 当点C,D关于抛物线对称轴(直线x=b)对称时,b- = -b ∴b= 且二次函数图象的开口向下,顶点M在直线y=4x+1上, 综上:①当0<b< 时,y1>y2; ②当b= 时,y1=y2; ③当 <b< 时,y1<y2。 【考点】二次函数与一次函数的综合应用 【解析】【分析】(1)验证一个点的坐标是否在一个函数图象:即把该点的横坐标代入该函数表达式,求出纵坐标与该点的纵坐标比较是否一样; (2)求不等式mx+5>-(x-b)2+4b+1的解集,不能直接解不等式,需要结合函数图象解答,因为次函数y=-(x-b)2+4b+1,一次函数y=mx+5,这个不等式即表示一次函数的值要大于二次函数的值,结合图象,即一次函数的图象在二次函数图的上方时x的取值范围,此时x的范围是在点B的左边,点A的右边,则需要分别求出点B和点A的横从标;因为点B是在直线直线y=mx+5与y轴的交点,令x=0,可求得B(0,5);因为二次函数y=-(x-b)2+4b+1图象经过点B,将B(0,5)代入可求得b,然后令二次函数y=-(x-b)2+4b+1=0,求出点A的横坐标的值即可 (3)二次函数y=-(x-b)2+4b+1的图象是开口向下的,所以有最大值,当点离对称轴越近时,也就越大,因为C(, y1),D(, y2)的横坐标是确定的,则需要确定对称轴x=b的位置,先由顶点M在△AOB内,得出b的取值范围;一般先确定y1=y2时对称轴位置,再结合“点离对称轴越近时,也就越大”分三类讨论,当y1>y2 , 当y1=y2 , 当y1<y2时b的取值范围. 24.【答案】(1)如图1,过点A作AD⊥直线CB于点D, ∴△ADC为直角三角形,∠ADC=90°, ∵∠ACB=30°,AC=6, ∴AD= AC=3 ∴AD=BC=3. 即△ABC是“等高底”三角形。 (2)如图2, ∵△ABC是“等高底”三角形,BC是“等底”, ∴AD=BC. ∵△A'BC与△ABC关于直线BC对称, ∴∠ADC=90° ∵点B是△AA'C的重心, ∴BC=2BD 设BD=x,则AD=BC=2x, ∴CD= x ∴由勾股定理得AC ∴ (3)①当AB= BC时, Ⅰ.如图3.作AE⊥l1于点E,DF⊥AC于点F ∴“等高底”△ABC的“等底”为BC,l1∥l2 , ∵l1与l2之间的距离为2,AB= BC ∴BC=AE=2,AB= , ∴BE=2,即EC=4, ∴AC= . ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C, ∴∠DCF=45° 设DF=CF=x ∵l1∥l2 , ∴∠ACE=∠DAF, ∴ 即AF=2x AC=3x= ,可得x= , ∴CD= x= Ⅱ.如图4,此时△ABC是等腰直角三角形 ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C, ∴△ACD是等腰直角三角形, ∴CD= AC= 。 ②当AC= BC时, Ⅰ.如图5,此时△ABC是等腰直角三角形, ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C, ∴A'C⊥l1 , ∴CD=AB=BC=2. Ⅱ.如图6,作AE⊥l1于点E,则AE=BC, ∴AC= BC= AE, ∴∠ACE=45° ∴△ABC绕点C按顺时针方向旋转45°得到△A'B'C时,点A'在直线l1上, ∴A'C∥l2 , 即直线A'C与l2无交点 综上,CD的值为 , ,2 【考点】含30度角的直角三角形,勾股定理,轴对称的性质,旋转的性质 【解析】【分析】(1)过点A作AD⊥直线CB于点D,根据30°角所对的直角边等于斜边的一半,可求出AD的长,从而可证得AD=BC,因此可证得结论。 (2)根据已知条件△ABC是“等高底”三角形,BC是“等底,可得出AD=BC,再根据△A'BC与△ABC关于直线BC对称,可得出∠ADC=90°,然后根据点B是△AA'C的重心,得出BC=2BD,利用勾股定理就可求解。 (2)分情况讨论:①当AB= BC时,Ⅰ.如图3.作AE⊥l1于点E,DF⊥AC于点F,根据已知及勾股定理求出AC的长,再根据旋转的性质,得出∠DCF=45°,然后证明△ADF∽△AEC,得出对应边成比例,可求得CD的长;Ⅱ.如图4,此时△ABC是等腰直角三角形,根据旋转的性质,可得出CD的长;②当AC=BC时,Ⅰ.如图5,此时△ABC是等腰直角三角形,可得出A'C⊥l1 , 可得出CD的长;Ⅱ.如图6,作AE⊥l1于点E,则AE=BC,根据勾股定理及相似三角形的性质,可得出CD的长。即可得出答案。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 嘉兴市 2018 年中 数学 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文