辽宁省大连市2019年中考数学真题试题(含解析).doc
《辽宁省大连市2019年中考数学真题试题(含解析).doc》由会员分享,可在线阅读,更多相关《辽宁省大连市2019年中考数学真题试题(含解析).doc(20页珍藏版)》请在咨信网上搜索。
2019年辽宁省大连市中考数学试卷 一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确) 1.(3分)﹣2的绝对值是( ) A.2 B. C.﹣ D.﹣2 2.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是( ) A. B. C. D. 3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为( ) A.58×103 B.5.8×103 C.0.58×105 D.5.8x104 4.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为( ) A.(3,﹣1) B.(3,3) C.(1,1) D.(5,1) 5.(3分)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是( ) A. B. C. D. 6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是( ) A.等腰三角形 B.等边三角形 C.菱形 D.平行四边形 7.(3分)计算(﹣2a)3的结果是( ) A.﹣8a3 B.﹣6a3 C.6a3 D.8a3 8.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( ) A. B. C. D. 9.(3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为( ) A.2 B.4 C.3 D.2 10.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为 . 二、填空题(本题共6小题,每小題分,共18分) 11.(3分)如图AB∥CD,CB∥DE,∠B=50°,则∠D= °. 12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是 . 13.(3分)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为 . 14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为 . 15.(3分)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为 m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33). 16.(3分)甲、乙两人沿同一条直路走步,如果两人分别从这条多路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位;min)的函数图象,则a﹣b= . 三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分) 17.(9分)计算:(﹣2)2++6 18.(9分)计算:÷+ 19.(9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE. 20.(12分)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分. 成绩等级 频数(人) 频率 优秀 15 0.3 良好 及格 不及格 5 根据以上信息,解答下列问题 (1)被测试男生中,成绩等级为“优秀”的男生人数为 人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为 %; (2)被测试男生的总人数为 人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为 %; (3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数. 四、解答题(本共3小,其中21、22题各分,23题10分,共28分) 21.(9分)某村2016年的人均收入为20000元,2018年的人均收入为24200元 (1)求2016年到2018年该村人均收入的年平均增长率; (2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元? 22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x>0)的图象上,点B在OA的廷长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD. (1)求该反比例函数的解析式; (2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长. 23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP (1)求证:∠BAC=2∠ACD; (2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径. 五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分) 24.(11分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求: (1)线段AB的长; (2)S关于m的函数解析式,并直接写出自变量m的取值范围. 25.(12分)阅读下面材料,完成(1)﹣(3)题 数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法: 小明:“通过观察和度量,发现∠BAE与∠DAC相等.” 小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.” …… 老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.” (1)求证:∠BAE=∠DAC; (2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明; (3)直接写出的值(用含k的代数式表示). 26.(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0). (1)填空:t的值为 (用含m的代数式表示) (2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式; (3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围. 2019年辽宁省大连市中考数学试卷 参考答案与试题解析 一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确) 1.【解答】解:﹣2的绝对值是2. 故选:A. 2.【解答】解:左视图有3列,每列小正方形数目分别为2,1,1. 故选:B. 3.【解答】解:将数58000用科学记数法表示为5.8×104. 故选:D. 4.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1), 故选:A. 5.【解答】解:5x+1≥3x﹣1, 移项得5x﹣3x≥﹣1﹣1, 合并同类项得2x≥﹣2, 系数化为1得,x≥﹣1, 在数轴上表示为: 故选:B. 6.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误; B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误; C、菱形既是轴对称图形,又是中心对称图形,故本选项正确; D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误. 故选:C. 7.【解答】解:(﹣2a)3=﹣8a3; 故选:A. 8.【解答】解:两次摸球的所有的可能性树状图如下: ∴P两次都是红球=. 故选:D. 9.【解答】解:连接AC交EF于点O,如图所示: ∵四边形ABCD是矩形, ∴AD=BC=8,∠B=∠D=90°, AC===4, ∵折叠矩形使C与A重合时,EF⊥AC,AO=CO=AC=2, ∴∠AOF=∠D=90°,∠OAF=∠DAC, ∴则Rt△FOA∽Rt△ADC, ∴=,即:=, 解得:AF=5, ∴D′F=DF=AD﹣AF=8﹣5=3, 故选:C. 10.【解答】解:当y=0时,﹣x2+x+2=0, 解得:x1=﹣2,x2=4, ∴点A的坐标为(﹣2,0); 当x=0时,y=﹣x2+x+2=2, ∴点C的坐标为(0,2); 当y=2时,﹣x2+x+2=2, 解得:x1=0,x2=2, ∴点D的坐标为(2,2). 设直线AD的解析式为y=kx+b(k≠0), 将A(﹣2,0),D(2,2)代入y=kx+b,得: ,解得:, ∴直线AD的解析式为y=x+1. 当x=0时,y=x+1=1, ∴点E的坐标为(0,1). 当y=1时,﹣x2+x+2=1, 解得:x1=1﹣,x2=1+, ∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1), ∴PQ=1+﹣(1﹣)=2. 故答案为:2. 二、填空题(本题共6小题,每小題分,共18分) 11.【解答】解:∵AB∥CD, ∴∠B=∠C=50°, ∵BC∥DE, ∴∠C+∠D=180°, ∴∠D=180°﹣50°=130°, 故答案为:130. 12.【解答】解:观察条形统计图知:为25岁的最多,有8人, 故众数为25岁, 故答案为:25. 13.【解答】解:∵△ABC是等边三角形, ∴∠B=∠BAC=∠ACB=60°, ∵CD=AC, ∴∠CAD=∠D, ∵∠ACB=∠CAD+∠D=60°, ∴∠CAD=∠D=30°, ∴∠BAD=90°, ∴AD===2. 故答案为2. 14.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛, 根据题意得:, 故答案为. 15.【解答】解:在Rt△BCD中,tan∠BDC=, 则BC=CD•tan∠BDC=10, 在Rt△ACD中,tan∠ADC=, 则AC=CD•tan∠ADC≈10×1.33=13.3, ∴AB=AC﹣BC=3.3≈3(m), 故答案为:3. 16.【解答】解:从图1,可见甲的速度为=60, 从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80, ∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程, a﹣b==, 故答案为. 三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分) 17.【解答】解:原式=3+4﹣4+2+6× =3+4﹣4+2+2 =7. 18.【解答】解:原式=×﹣ =﹣ =. 19.【解答】证明:∵BE=CF, ∴BE+EF=CF+EF,即BF=CE, 在△ABF和△DCE中, , ∴△ABF≌△DCE(SAS) ∴AF=DE. 20.【解答】解:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人, 被测试男生总数15÷0.3=50(人), 成绩等级为“及格”的男生人数占被测试男生总人数的百分比:, 故答案为15,90; (2)被测试男生总数15÷0.3=50(人), 成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:, 故答案为50,10; (3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%, 该校八年级男生成绩等级为“良好”的学生人数180×40%=72(人) 答:该校八年级男生成绩等级为“良好”的学生人数72人. 四、解答题(本共3小,其中21、22题各分,23题10分,共28分) 21.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x, 根据题意得:20000(1+x)2=24200, 解得:x1=0.1=10%,x2=1.1(不合题意,舍去). 答:2016年到2018年该村人均收入的年平均增长率为10%. (2)24200×(1+10%)=26620(元). 答:预测2019年村该村的人均收入是26620元. 22.【解答】解:(1)∵点A(3,2)在反比例函数y=(x>0)的图象上, ∴k=3×2=6, ∴反比例函数y=; 答:反比例函数的关系式为:y=; (2)过点A作AE⊥OC,垂足为E,连接AC, 设直线OA的关系式为y=kx,将A(3,2)代入得,k=, ∴直线OA的关系式为y=x, ∵点C(a,0),把x=a代入y=x,得:y=a,把x=a代入y=,得:y=, ∴B(a,),即BC═a, D(a,),即CD= ∵S△ACD=, ∴CD•EC=,即,解得:a=6, ∴BD=BC﹣CD==3; 答:线段BD的长为3. 23.【解答】(1)证明:作DF⊥BC于F,连接DB, ∵AP是⊙O的切线, ∴∠PAC=90°,即∠P+∠ACP=90°, ∵AC是⊙O的直径, ∴∠ADC=90°,即∠PCA+∠DAC=90°, ∴∠P=∠DAC=∠DBC, ∵∠APC=∠BCP, ∴∠DBC=∠DCB, ∴DB=DC, ∵DF⊥BC, ∴DF是BC的垂直平分线, ∴DF经过点O, ∵OD=OC, ∴∠ODC=∠OCD, ∵∠BDC=2∠ODC, ∴∠BAC=∠BDC=2∠ODC=2∠OCD; (2)解:∵DF经过点O,DF⊥BC, ∴FC=BC=3, 在△DEC和△CFD中, , ∴△DEC≌△CFD(AAS) ∴DE=FC=3, ∵∠ADC=90°,DE⊥AC, ∴DE2=AE•EC, 则EC==, ∴AC=2+=, ∴⊙O的半径为. 五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分) 24.【解答】解:(1)当x=0时,y=3, 当y=0时,x=4, ∴直线y=﹣x+3与x轴点交A(4,0),与y轴交点B(0,3) ∴OA=4,OB=3, ∴AB=, 因此:线段AB的长为5. (2)当CD∥OA时,如图, ∵BD=OC,OC=m, ∴BD=m, 由△BCD∽△BOA得: ,即:,解得:m=; ①当0<m≤时,如图1所示:DE=m≤,此时点E在△AOB的内部, S=0 (0<m≤); ②当<m≤3时,如图2所示:过点D作DF⊥OB,垂足为F, 此时在x轴下方的三角形与△CDF全等, ∵△BDF∽△BAO, ∴, ∴DF=,同理:BF=m, ∴CF=2m﹣3, ∴S△CDF==(2m﹣3)×=m2﹣4m, 即:S=m2﹣4m,(<m≤3) ③当m>3时,如图3所示:过点D作DF⊥y轴,DG⊥x轴,垂足为、FG, 同理得:DF=,BF=m, ∴OF=DG=m﹣3,AG=m﹣4, ∴S=S△OGE﹣S△ADG== ∴S=,(m>3) 答:S= 25.【解答】证明:(1)∵AB=AD ∴∠ABD=∠ADB ∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE ∴∠BAE=∠DAC (2)设∠DAC=α=∠BAE,∠C=β ∴∠ABC=∠ADB=α+β ∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ∴∠EAC=2β ∵AF平分∠EAC ∴∠FAC=∠EAF=β ∴∠FAC=∠C,∠ABE=∠BAF=α+β ∴AF=FC,AF=BF ∴AF=BC=BF ∵∠ABE=∠BAF,∠BGA=∠BAC=90° ∴△ABG∽△BCA ∴ ∵∠ABE=∠BAF,∠ABE=∠AFB ∴△ABF∽△BAD ∴,且AB=kBD,AF=BC=BF ∴k=,即 ∴ (3)∵∠ABE=∠BAF,∠BAC=∠AGB=90° ∴∠ABH=∠C,且∠BAC=∠BAC ∴△ABH∽△ACB ∴ ∴AB2=AC×AH 设BD=m,AB=km, ∵ ∴BC=2k2m ∴AC==km ∴AB2=AC×AH (km)2=km×AH ∴AH= ∴HC=AC﹣AH=km﹣= ∴ 26.【解答】解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a, 顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a), C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1, t=2m﹣1, 故答案为:2m﹣1; (2)a=﹣1时, C1:y=(x﹣1)2﹣4, ①当t<1时, x=时,有最小值y2=, x=t时,有最大值y1=﹣(t﹣1)2+4, 则y1﹣y2=﹣(t﹣1)2+4﹣=1,无解; ②1≤t时, x=1时,有最大值y1=4, x=时,有最小值y2=﹣(t﹣1)2+4, y1﹣y2=≠1(舍去); ③当t时, x=1时,有最大值y1=4, x=t时,有最小值y2=﹣(t﹣1)2+4, y1﹣y2=(t﹣1)2=1, 解得:t=0或2(舍去0), 故C2:y=(x﹣2)2﹣4=x2﹣4x; (3)m=0, C2:y=﹣a(x+1)2+4a, 点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0), 当a>0时,a越大,则OD越大,则点D′越靠左, 当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=, 当C2过点D′时,同理可得:a=1, 故:0<a或a≥1; 当a<0时, 当C2过点D′时,﹣3a=1,解得:a=﹣, 故:a≤﹣; 综上,故:0<a或a≥1或a≤﹣. 20- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 辽宁省 大连市 2019 年中 数学 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文