2011年海南中考数学试题及答案.doc
《2011年海南中考数学试题及答案.doc》由会员分享,可在线阅读,更多相关《2011年海南中考数学试题及答案.doc(23页珍藏版)》请在咨信网上搜索。
海南省2011年初中毕业生学业考试 数 学 科 试 题 (考试时间100分钟,满分110分) 一、选择题(本大题满42分,每小题3分) 1.-3的绝对值是 A.-3 B.3 C. D. 2.计算,正确结果是 A. B. C. D. 3.不等式的解集是 A. B. C. D. 4.数据,,,,的中位数是 A. B. C. D. 5.“ 比的倍大的数”用代数式表示是 A. B. C. D. 6.图1所示几何体的俯视图是 7.正方形是轴对称图形,它的对称轴共有 A 1条 B 2条 C 3条 D 4条 8.把1枚质地均匀的普通硬币重复掷两次,落地后两次都是正面朝上的概率是 A. B. C. D. 9.海南省2010年第六次人口普查数据显示,2010年11月1日零时,全省总人口为8671518人,数据8671518用科学记数法(保留三个有效数字)表示应是 A. B. C. D. 10.已知点A(2,3)在反比例函授的图象上,则的值是 A. B. C. D. 11.如图2, 已知直线,被直线所截,且,,那么的度数为 A. B. C. D. 12.如图3,在中,,于点D,则图中相似三角形共有 A.1对 B.2对 C.3对 D.4对 13.如图4,在以为直径的半圆中,是它的中点,若,则的面积是 A. B. C. D. 14.如图5,将 ABCD折叠,使顶点恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是 A.①②都对 B.①②都错 C.①对②错 D.①错②对 二、填空题(本大题满分12分,每小题3分) 15.分解因式__________. 16.方程的解是__________ 17.如图6,在中, CM,的垂直平分线交于点,的周长是CM,则的长度等于_________ CM 18.如图7,是的直径,是的切线,为切点,连结交于点,若,则_________ 三、解答题(本大题满分56分) 19. 计算:(满分8分,每小题4分) (1) (2) 20.(满分8分)第十六届亚运会共颁发金牌477枚,图8是不完整的金牌数条形统计图和扇形统计图 根据以上信息,解答下列问题: (1)请将条形统计图补充完整; (2)中国体育健儿在第十六届亚运会上共夺得金牌__________枚; (3)在扇形统计图中,日本代表团所对应的扇形的圆心角约为_________(精确到) 21.(满分8分),在正方形网格中建立如图9所示的平面直角坐标系xoy,△ABC的三个顶点都在格点上,点A的坐标是,请解答下列问题: (1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1移并写出点A的对应点A1的坐标; (2)画出△A1B1C1关于y轴对称的△A2B2C2 ; C A B O 图9 (3)将△ABC绕点C逆时针旋转90°,画出旋转后的△A3B3C ; 22.(满分8分) 在海南东环高铁上运行的一列“和谐号”动车组有一等车厢和二等车厢共6节,一共设有座位496个,其中每节一等车厢座位64个,每节二等车厢设座位92个。试求该列车一等车厢和二等车厢各有多少节? 23.(满分10分)如图10,在菱形中,,点、分别在边上,且 (1)求证: ; (2).已知,,求的值(结果保留根号) A B C D P Q 图10 24.(满分14分)如图11,已知抛物线(为常数)经过坐标原点,且与x轴交于另一点,其顶点在第一象限。 (1)求该抛物线所对应的函数关系式; (2)设点是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点作与x轴的平行线交该抛物线于另一点,再做轴于点,于点 ①当线段、的长都是整数个单位长度时,求矩形的周长; ②求矩形的周长的最大值,并写出此时点的坐标; ③当矩形的周长取得最大值时,它的面积是否也同时取得最大值?请判断并说明理由。 D B A M E C O y x 图11 一、选择题(本大题满分42分,每小题3分) 1、(2011•海南)﹣3的绝对值是( ) A、﹣3 B、3 C、 D、 考点:绝对值。 专题:计算题。 分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号. 解答:解:|﹣3|=3. 故﹣3的绝对值是3. 故选B. 点评:考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0. 2、(2011•海南)计算(a2)3,正确结果是( ) A、a5 B、a6 C、a8 D、a9 考点:幂的乘方与积的乘方。 专题:探究型。 分析:根据幂的乘方法则进行计算即可. 解答:解:由幂的乘方与积的乘方法则可知,(a2)3=a2×3=a6. 故选B. 点评:本题考查的是幂的乘方法则,即底数不变,指数相乘. 3、(2011•海南)不等式x﹣2<0的解集是( ) A、x>﹣2 B、x<﹣2 C、x>2 D、x<2 考点:解一元一次不等式。 分析:首先移项,注意要﹣2移项后变号,再合并同类项即可. 解答:解:x﹣2<0, 移项得:x<0+2, 合并同类项得:x<2, ∴不等式的解集为:x<2. 故选D. 点评:此题主要考查了一元一次不等式的解法,解题过程中一定要注意符号问题. 4、(2011•海南)数据2,﹣l,0,1,2的中位数是( ) A、1 B、0 C、﹣1 D、2 考点:中位数。 专题:应用题。 分析:将数据按从小到大依次排列,由于数据有奇数个,故中间位置的数即为中位数. 解答:解:将数据2,﹣l,0,1,2按从小到大依次排列为﹣l,0,1,2,2, 中位数为1. 故选A. 点评:此题考查了中位数的定义,将原数据按从小到大依次排列是解题的关键. 5、(2011•海南)“比a的2倍大l的数”用代数式表示是( ) A、2(a+1) B、2(a﹣1) C、2a+1 D、2a﹣1 考点:列代数式。 分析:由题意按照描述列式子为2a+1,从选项中对比求解. 解答:解:由题意按照描述列下式子:2a+1 故选C. 点评:解决问题的关键是读懂题意,找到所求的量的等量关系. 6、(2011•海南)如图所示几何体的俯枧图是( ) A、 B、 C、 D、 考点:简单组合体的三视图。 专题:几何图形问题。 分析:找到从上面看所得到的图形即可,注意中间一个圆内切. 解答:解:从上面看可得到一个长方形,中间一个内切的圆的组合图形. 故选A. 点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,注意看得到的棱画实线. 7、(2011•海南)正方形是轴对称图形,它的对称轴共有( ) A、1条 B、2条 C、3条 D、4条 考点:正方形的性质;轴对称图形。 专题:计算题。 分析:正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴. 解答:解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线, 对称轴共4条. 故选D. 点评:本题考查了正方形的轴对称性.关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性. 8、(2011•海南)一把1枚质地均匀的昔通硬币重复掷两次,落地后两次都是正面朝上的概率是( ) A、1 B、 C、 D、 考点:列表法与树状图法。 专题:数形结合。 分析:列举出所有情况,看落地后两次都是正面朝上的情况数占总情况数的多少即可. 解答:解:共有4种情况,落地后两次都是正面朝上的情况数有1种,所以概率为.故选D. 点评:考查概率的求法;得到落地后两次都是正面朝上的情况数是解决本题的关键;用到的知识点为:概率=所求情况数与总情况数之比. 9、(2011•海南)海南省20l0年第六次人口普查数据显示,2010年11月1日零时.全省总人口为8671518人.数据8671518用科学记数发(保留三个有效数字)表示应是( ) A、8.7×106 B、8.7×107 C、8.67×106 D、8.67×107 考点:科学记数法与有效数字。 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于8671518有7位,所以可以确定n=7﹣1=6. 有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字. 用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关. 解答:解:8671518=8.671518×106≈8.67×106. 故选C. 点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法. 10、(2011•海南)已知点A(2,3)在反比例函数的图象上,则k的值是( ) A、﹣7 B、7 C、﹣5 D、5 考点:待定系数法求反比例函数解析式。 分析:将A点坐标代入反比例函数,即可得出答案. 解答:解:∵点A(2,3)在反比例函数的图象上, ∴k+1=6. 解得k=5. 故选D. 点评:本题考查了用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,横纵坐标乘积为定值. 11、(2011•海南)如图.已知直线a,b被直线c所截,且a∥b,∠1=48°,那么∠2的度数为( ) A、42° B、48° C、52° D、132° 考点:平行线的性质。 分析:由a∥b,∠1=48°,根据两直线平行,同位角相等得到∠3=∠1=48°,再根据对顶角相等即可得到∠2. 解答:解:如图, ∵a∥b,∠1=48°, ∴∠3=∠1=48°, ∴∠2=∠3=48°. 故选B. 点评:本题考查了两直线平行的性质:两直线平行,同位角相等;也考查了对顶角的性质. 12、(2011•海南)如图,在△ABC中.∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( ) A、1对 B、2对 C、3对 D、4对 考点:相似三角形的判定。 专题:常规题型。 分析:根据相似三角形的判定定理及已知即可得到存在的相似三角形. 解答:解:∵∠ACB=90°,CD⊥AB, ∴△ABC∽△ACD, △ACD∽CBD, △ABC∽CBD, 所以有三对相似三角形. 故选C. 点评:本题主要考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似. 13、(2011•海南)如图,在以AB为直径的半圆O中,C是它的中点,若AC=2,则△ABC的面积是( ) A、1.5 B、2 C、3 D、4 考点:圆周角定理;等腰直角三角形;圆心角、弧、弦的关系。 分析:利用圆周角定理推论可得∠C=90°,根据C是半圆O中点,可得AC=CB,再求三角形的面积=AC•BC. 解答:解:∵C是半圆O中点, ∴AC=CB=2, ∵AB为直径, ∴∠C=90°, ∴△ABC的面积是:2×2×=2. 故选B. 点评:此题主要考查了圆周角定理与三角形的面积公式,做题的关键是证出△ACB是等腰直角三角形. 14、(2011•海南)如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论 ①MN∥BC,②MN=AM,下列说法正确的是( ) A、①②都对 B、①②都错 C、①对②错 D、①错②对 考点:翻折变换(折叠问题);平行四边形的性质。 分析:根据题意,推出∠B=∠D=∠AMN,即可推出结论①,由AM=DA推出四边形AMND为菱形,因此推出②. 解答:解:∵平行四边形ABCD, ∴∠B=∠D=∠AMN, ∴MN∥BC, ∵AM=DA, ∴四边形AMND为菱形, ∴MN=AM. 故选A. 点评:本题主要考查翻折变换的性质、平行四边形的性质、菱形的判定和性质,平行线的判定,解题的关键在于熟练掌握有关的性质定理,推出四边形AMND为菱形. 二、填空题(本答题满分12分,每小题3分) 15、(2011•海南)分解因式:x2﹣4= (x+2)(x﹣2) . 考点:因式分解-运用公式法。 分析:直接利用平方差公式进行因式分解即可. 解答:解:x2﹣4=(x+2)(x﹣2). 点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反. 16、(2011•海南)方程的解是 x=﹣3 . 考点:解分式方程。 分析:观察可得最简公分母是(2+x),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程的两边同乘(2+x),得 x=3x+6, 解得x=﹣3. 检验:把x=﹣3代入(x+2)=﹣1≠0. ∴原方程的解为:x=﹣3. 故答案为:x=﹣3. 点评:本题考查了分式方程的解的解法,注: (1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解. (2)解分式方程一定注意要验根. 17、(2011•海南)如图,在△ABC中,AB=AC=3cm,AB的垂直平分线交AC于点N,△BCN的周长是5cm,则BC的长等于 2 cm. 考点:线段垂直平分线的性质。 专题:计算题。 分析:由AB的垂直平分线交AC于点N,根据线段的垂直平分线的性质得到NA=NB,而BC+BN+NC=5cm,则BC+AN+NC=5cm,由AC=AN+NC=3cm,即可得到BC的长. 解答:解:∵AB的垂直平分线交AC于点N, ∴NA=NB, 又∵△BCN的周长是5cm, ∴BC+BN+NC=5cm, ∴BC+AN+NC=5cm, 而AC=AN+NC=3cm, ∴BC=2cm. 故答案为:2. 点评:本题考查了线段的垂直平分线的性质:线段的垂直平分线的点到线段两端点的距离相等;也考查了三角形周长的定义. 18、(2011•海南)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50°,则∠AOD= 80° • 考点:切线的性质;圆周角定理。 分析:连接AD,推出AD⊥BD,∠DAC=∠B=90°﹣∠C=40°,推出∠AOD=80°. 解答:解:连接AD, ∵AB是⊙O的直径,AC是⊙O的切线, ∴AD⊥BD,AB⊥AC, ∵∠C=50°, ∴∠DAC=∠B=90°﹣∠C=40°, ∴∠AOD=80°. 故答案为:80°. 点评:本题主要考查圆周角定理、切线的性质,解题的关键在于连接AD,构建直角三角形,求∠B的度数. 三、解答题(本答题满分56分) 19、(2011•海南)计算 (1) (2)(a+1)2﹣a(a﹣1) 考点:整式的混合运算;实数的运算。 分析:(1)本题需先根据实数的运算法则分别进行计算,再把所得结果合并即可. (2)本题需先根据整式的混合运算的顺序和乘法公式分别进行计算再合并同类项即可求出结果. 解答:解(1), =3﹣2﹣8, =﹣7; (2)(a+1)2﹣a(a﹣1), =a2+2a+1﹣a2+a, =3a+1. 点评:本题主要考查了整式的混合运算,在解题时要注意运算顺序和法则以及乘法公式的综合应用是本题的关键. 20、(2011•海南)第十六届亚远会共颁发金牌477枚,如图是不完整的金牌数条形统计图和扇形统计图, 根据以上信息.觯答下列问题: (1)请将条形统计图补充完整; (2)中国体育健儿在第十六届亚运会上共夺得金牌 199 枚; (3)在扇形统计图中,日本代表团所对应的扇形的圆心角约为 36 °(精确到1°). 考点:条形统计图;扇形统计图。 分析:(1)利用总人数减去中国,韩国,伊朗,其它国家的人数,即可求得日本的奖牌数,从而作出统计图; (2)根据条形统计图即可直接写出; (3)利用360度乘以日本所占的比例即可求解. 解答:解:(1)日本的奖牌数是:477﹣199﹣76﹣20﹣134=48. (2)根据条形图可以得到:中国体育健儿在第十六届亚运会上共夺得金牌199枚; 故答案是:199. (3)圆心角是:360×≈36° 故答案是:36°. 点评:本题主要考查了条形统计图与扇形统计图,条形统计图容易表示出各段人数的多少,而扇形统计图可以反映出各部分所占的比例. 21、(2011•海南)在正方形网格中建立如图所示的平面直角坐标系xoy.△ABC的三个顶点都在格点上,点A的坐标是(4,4 ),请解答下列问题; (1)将△ABC向下平移5个单位长度,画出平移后的A1B1C1,并写出点A的对应点A1的坐标; (2)画出△A1B1C1关于y轴对称的△A2B2C2; (3)将△ABC绕点C逆时针旋转90°,画出旋转后的的△A3B3C. 考点:作图-旋转变换;作图-轴对称变换;作图-平移变换。 分析:(1)由将△ABC向下平移5个单位长度,画出平移后的A1B1C1,即可知横坐标不变,纵坐标减5,则可在平面直角坐标系中画出; (2)由△A1B1C1关于y轴对称的是△A2B2C2,即可知纵坐标不变,横坐标互为相反数,在平面直角坐标系中画出即可; (3)由将△ABC绕点C逆时针旋转90°,则可知旋转角为90°,注意是逆时针旋转即可画出图形. 解答:解:(1)如图:点A的对应点A1的坐标为(4,﹣1); (2)如图:△A2B2C2即是△A1B1C1关于y轴对称得到的; (3)如图:△A3B3C即是将△ABC绕点C逆时针旋转90°得到的. 点评:此题考查了平移、对称以及旋转的知识,考查了学生的动手能力.掌握各种变换的性质是解题的关键. 22、(2011•海南)在海南东环高铁上运行的一列“和谐号”动车组有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个.试求该列车一等车厢和二等车厢各有多少节? 考点:二元一次方程组的应用。 专题:方程思想。 分析:设该列车一等车厢和二等车厢各有x、y节,则第一个相等关系为:x+Y=6,再根据一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个得第二个相等关系为: 64x+92y=496,由此列方程组求解. 解答:解:设该列车一等车厢和二等车厢各有x、y节,根据题意得: ,解得:. 答:该列车一等车厢和二等车厢各有2,4节. 点评:此题考查的知识点是二元一次方程组的应用,解题的关键是由已知找出两个相等关系,列方程组求解. 23、(2011•海南)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ. (1)求证:△BDQ≌△ADP; (2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号). 考点:菱形的性质;全等三角形的判定与性质;解直角三角形。 分析:(1)由四边形ABCD是菱形,可证得AD=AB,∠ABD=∠CBD=∠ABC,AD∥BC,又由∠A=60°,易得△ABD是等边三角形,然后由SAS即可证得△BDQ≌△ADP; (2)首先过点Q作QE⊥AB,交AB的延长线于E,然后由三角函数的性质,即可求得PE与QE的长,又由勾股定理,即可求得PQ的长,则可求得cos∠BPQ的值. 解答:解:(1)∵四边形ABCD是菱形, ∴AD=AB,∠ABD=∠CBD=∠ABC,AD∥BC, ∵∠A=60°, ∴△ABD是等边三角形,∠ABC=120°, ∴AD=BD,∠CBD=∠A=60°, ∵AP=BQ, ∴△BDQ≌△ADP(SAS); (2)过点Q作QE⊥AB,交AB的延长线于E, ∵△BDQ≌△ADP, ∴BQ=AP=2, ∵AD∥BC, ∴∠QBE=60°, ∴QE=QB•sin60°=2×=,BE=QB•cos60°=2×=1, ∵AB=AD=3, ∴PB=AB﹣AP=3﹣2=1, ∴PE=PB+BE=2, ∴在Rt△PQE中,PQ==, ∴cos∠BPQ===. 点评:此题考查了菱形的性质与勾股定理、三角函数的性质.此题难度适中,解题的关键是数形结合思想的应用. 24、(2011•海南)如图,已知抛物线y=﹣x2+bx+9﹣b2(b为常数)经过坐标原点O,且与x轴交于另一点E.其顶点M在第一象限. (1)求该抛物线所对应的函数关系式; (2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作AB⊥x轴于点B.DE⊥x轴于点C. ①当线段AB、BC的长都是整数个单位长度时,求矩形ABCD的周长; ②求矩形ABCD的周长的最大值,并写出此时点A的坐标; ③当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断井说明理由. 考点:二次函数综合题。 分析:(1)已知抛物线过原点,代入求得b值而求出二次函数解析式; (2)①关键在于正确作出旋转后的图形,结合几何知识,利用数形结合的思想求解; ②应当明确矩形ABCD进行求解,逐一讨论求解,要求思维的完备性. ③代入得到二次函数,而进行讨论解得. 解答:解:(1)由题意代入原点到二次函数式 则9﹣b2=0, 解得b=±3, 由题意抛物线的对称轴大于0, , 所以b=3, 所以解析式为y=﹣x2+3x; (2)根据两个三角形相似的条件,由于在△ECD中,∠ECD=60°, 若△BCP与△ECD相似,则△BCP中必有一个角为60°, 下面进行分类讨论: ①当P点直线CB的上方时,由于△PCB中,∠CBP>90°或∠BCP>90°, ∴△PCB为钝角三角形, 又∵△ECD为锐角三角形, ∴△ECD与△CPB不相似. 从而知在直线CB上方的抛物线上不存在点P使△CPB与△ECD相似; ②当P点在直线CB上时,点P与C点或B点重合,不能构成三角形, ∴在直线CB上不存在满足条件的P点; ③当P点在直线CB的下方时,若∠BCP=60°,则P点与E1点重合, 此时,∠ECD=∠BCE1,而, ∴, ∴△BCE与△ECD不相似, 若∠CBP=60°,则P点与A点重合, 根据抛物线的对称性,同理可证△BCA与△CED不相似, 若∠CPB=60°,假设抛物线上存在点P使△CPB与△ECD相似, ∴EF=sin60°×4=2,FD=1, ∴ED==, ∴当矩形ABCD的周长取得最大值时,它的面积能同时取得最大值. 点评:本题是二次函数的综合题型,其中涉及的到大知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2011 海南 中考 数学试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文