2017年湖南高考文科数学试题及答案word版.doc
《2017年湖南高考文科数学试题及答案word版.doc》由会员分享,可在线阅读,更多相关《2017年湖南高考文科数学试题及答案word版.doc(11页珍藏版)》请在咨信网上搜索。
绝密★启用前 2017年普通高等学校招生全国统一考试 文科数学 本试卷共5页,满分150分。 考生注意: 1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,监考员将试题卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A=,B=,则 A.AB= B.AB C.AB D.AB=R 2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差 C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数 3.下列各式的运算结果为纯虚数的是 A.i(1+i)2 B.i2(1-i) C.(1+i)2 D.i(1+i) 4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A. B. C. D. 5.已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为 A. B. C. D. 6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是 7.设x,y满足约束条件则z=x+y的最大值为 A.0 B.1 C.2 D.3 8..函数的部分图像大致为 9.已知函数,则 A.在(0,2)单调递增 B.在(0,2)单调递减 C.y=的图像关于直线x=1对称 D.y=的图像关于点(1,0)对称 10.如图是为了求出满足的最小偶数n,那么在和两个空白框中,可以分别填入 A.A>1000和n=n+1 B.A>1000和n=n+2 C.A≤1000和n=n+1 D.A≤1000和n=n+2 11.△ABC的内角A、B、C的对边分别为a、b、c。已知,a=2,c=,则C= A. B. C. D. 12.设A、B是椭圆C:长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是 A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知向量a=(–1,2),b=(m,1).若向量a+b与a垂直,则m=______________. 14.曲线在点(1,2)处的切线方程为_________________________. 15.已知,tan α=2,则=__________。 16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径。若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________。 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:60分。 17.(12分) 记Sn为等比数列的前n项和,已知S2=2,S3=-6. (1)求的通项公式; (2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列。 18.(12分) 如图,在四棱锥P-ABCD中,AB//CD,且 (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积. 19.(12分) 为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸: 抽取次序 1 2 3 4 5 6 7 8 零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序 9 10 11 12 13 14 15 16 零件尺寸 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得,,,,其中为抽取的第个零件的尺寸,. (1)求的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小). (2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查? (ⅱ)在之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01) 附:样本的相关系数,. 20.(12分) 设A,B为曲线C:y=上两点,A与B的横坐标之和为4. (1)求直线AB的斜率; (2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程. 21.(12分) 已知函数=ex(ex﹣a)﹣a2x. (1)讨论的单调性; (2)若,求a的取值范围. (二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。 22.[选修4―4:坐标系与参数方程](10分) 在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为. (1)若a=−1,求C与l的交点坐标; (2)若C上的点到l的距离的最大值为,求a. 23.[选修4—5:不等式选讲](10分) 已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│. (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围. 2017年高考新课标1文数答案 1.A 2.B 3.C 4.B 5.D 6.A 7.D 8.C 9.C 10.D 11.B 12.A 13.7 14. 15. 16. 17.(12分)【解析】(1)设的公比为.由题设可得 ,解得,. 故的通项公式为. (2)由(1)可得. 由于, 故,,成等差数列. 18. (12分)【解析】(1)由已知,得,. 由于,故,从而平面. 又平面,所以平面平面. (2)在平面内作,垂足为. 由(1)知,平面,故,可得平面. 设,则由已知可得,. 故四棱锥的体积. 由题设得,故. 从而,,. 可得四棱锥的侧面积为. 19. (12分)【解析】(1)由样本数据得的相关系数为 . 由于,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小. (2)(i)由于,由样本数据可以看出抽取的第13个零件的尺寸在以外,因此需对当天的生产过程进行检查. (ii)剔除离群值,即第13个数据,剩下数据的平均数为,这条生产线当天生产的零件尺寸的均值的估计值为10.02. , 剔除第13个数据,剩下数据的样本方差为, 这条生产线当天生产的零件尺寸的标准差的估计值为. 20.(12分)解: (1)设A(x1,y1),B(x2,y2),则,,,x1+x2=4, 于是直线AB的斜率. (2)由,得. 设M(x3,y3),由题设知,解得,于是M(2,1). 设直线AB的方程为,故线段AB的中点为N(2,2+m),|MN|=|m+1|. 将代入得. 当,即时,. 从而. 由题设知,即,解得. 所以直线AB的方程为. 21. (12分)(1)函数的定义域为,, ①若,则,在单调递增. ②若,则由得. 当时,;当时,,所以在单调递减,在单调递增. ③若,则由得. 当时,;当时,,故在单调递减,在单调递增. (2)①若,则,所以. ②若,则由(1)得,当时,取得最小值,最小值为.从而当且仅当,即时,. ③若,则由(1)得,当时,取得最小值,最小值为.从而当且仅当,即时. 综上,的取值范围为. 22.[选修4-4:坐标系与参数方程](10分) 解:(1)曲线的普通方程为. 当时,直线的普通方程为. 由解得或. 从而与的交点坐标为,. (2)直线的普通方程为,故上的点到的距离为 . 当时,的最大值为.由题设得,所以; 当时,的最大值为.由题设得,所以. 综上,或.、 23.[选修4-5:不等式选讲](10分) 解:(1)当时,不等式等价于.① 当时,①式化为,无解; 当时,①式化为,从而; 当时,①式化为,从而. 所以的解集为. (2)当时,. 所以的解集包含,等价于当时. 又在的最小值必为与之一,所以且,得. 所以的取值范围为.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 湖南 高考 文科 数学试题 答案 word
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文