山东省滨州市2020年中考数学试卷 (解析版).doc
《山东省滨州市2020年中考数学试卷 (解析版).doc》由会员分享,可在线阅读,更多相关《山东省滨州市2020年中考数学试卷 (解析版).doc(23页珍藏版)》请在咨信网上搜索。
2020年山东省滨州市中考数学试卷 一、选择题 1.下列各式正确的是( ) A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=5 2.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为( ) A.60° B.70° C.80° D.100° 3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是( ) A.1.1×10﹣9米 B.1.1×10﹣8米 C.1.1×10﹣7米 D.1.1×10﹣6米 4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为( ) A.(﹣4,5) B.(﹣5,4) C.(4,﹣5) D.(5,﹣4) 5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( ) A.1 B.2 C.3 D.4 6.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为( ) A.4 B.6 C.8 D.12 7.下列命题是假命题的是( ) A.对角线互相垂直且相等的平行四边形是正方形 B.对角线互相垂直的矩形是正方形 C.对角线相等的菱形是正方形 D.对角线互相垂直且平分的四边形是正方形 8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述: ①平均数是5,②中位数是4,③众数是4,④方差是4.4, 其中正确的个数为( ) A.1 B.2 C.3 D.4 9.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为( ) A.6 B.9 C.12 D.15 10.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为( ) A.有两个相等的实数根 B.没有实数根 C.有两个不相等的实数根 D.无法判定 11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为( ) A.3 B.4 C.5 D.6 12.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为( ) A. B. C. D. 二、填空题:本大题共8个小题.每小题5分,满分40分. 13.若二次根式在实数范围内有意义,则x的取值范围为 . 14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为 . 15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为 . 16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为 . 17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 . 18.若关于x的不等式组无解,则a的取值范围为 . 19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得an= (用含n的式子表示). 20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD的面积为 . 三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程. 21.先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1. 22.如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B. (1)求交点P的坐标; (2)求△PAB的面积; (3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围. 23.如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N. (1)求证:△PBE≌△QDE; (2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形. 24.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克. (1)当售价为55元/千克时,每月销售水果多少千克? (2)当月利润为8750元时,每千克水果售价为多少元? (3)当每千克水果售价为多少元时,获得的月利润最大? 25.如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE. (1)求证:直线CD是⊙O的切线; (2)求证:OA2=DE•CE. 26.如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点. (1)求这条抛物线的函数解析式; (2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d; (3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标. 参考答案 一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分. 1.下列各式正确的是( ) A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=5 【分析】根据绝对值的性质和相反数的定义对各选项分析判断即可. 解:A、∵﹣|﹣5|=﹣5, ∴选项A不符合题意; B、∵﹣(﹣5)=5, ∴选项B不符合题意; C、∵|﹣5|=5, ∴选项C不符合题意; D、∵﹣(﹣5)=5, ∴选项D符合题意. 故选:D. 2.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为( ) A.60° B.70° C.80° D.100° 【分析】根据平行线和角平分线的定义即可得到结论. 解:∵AB∥CD, ∴∠1=∠CPF=55°, ∵PF是∠EPC的平分线, ∴∠CPE=2∠CPF=110°, ∴∠EPD=180°﹣110°=70°, 故选:B. 3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是( ) A.1.1×10﹣9米 B.1.1×10﹣8米 C.1.1×10﹣7米 D.1.1×10﹣6米 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定. 解:110纳米=110×10﹣9米=1.1×10﹣7米. 故选:C. 4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为( ) A.(﹣4,5) B.(﹣5,4) C.(4,﹣5) D.(5,﹣4) 【分析】直接利用点的坐标特点进而分析得出答案. 解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5, ∴点M的纵坐标为:﹣4,横坐标为:5, 即点M的坐标为:(5,﹣4). 故选:D. 5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( ) A.1 B.2 C.3 D.4 【分析】根据轴对称图形与中心对称图形的概念求解. 解:线段是轴对称图形,也是中心对称图形; 等边三角形是轴对称图形,不是中心对称图形; 平行四边形不是轴对称图形,是中心对称图形; 圆是轴对称图形,也是中心对称图形; 则既是轴对称图形又是中心对称图形的有2个. 故选:B. 6.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为( ) A.4 B.6 C.8 D.12 【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断. 解:过A点作AE⊥y轴,垂足为E, ∵点A在双曲线y=上, ∴四边形AEOD的面积为4, ∵点B在双曲线线y=上,且AB∥x轴, ∴四边形BEOC的面积为12, ∴矩形ABCD的面积为12﹣4=8. 故选:C. 7.下列命题是假命题的是( ) A.对角线互相垂直且相等的平行四边形是正方形 B.对角线互相垂直的矩形是正方形 C.对角线相等的菱形是正方形 D.对角线互相垂直且平分的四边形是正方形 【分析】利用正方形的判定依次判断,可求解. 解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意; B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意; C、对角线相等的菱形是正方形是真命题,故选项C不合题意; D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意; 故选:D. 8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述: ①平均数是5,②中位数是4,③众数是4,④方差是4.4, 其中正确的个数为( ) A.1 B.2 C.3 D.4 【分析】先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断. 解:数据由小到大排列为3,4,4,5,9, 它的平均数为=5, 数据的中位数为4,众数为4, 数据的方差=[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4. 所以A、B、C、D都正确. 故选:D. 9.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为( ) A.6 B.9 C.12 D.15 【分析】直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案. 解:如图所示:∵直径AB=15, ∴BO=7.5, ∵OC:OB=3:5, ∴CO=4.5, ∴DC==6, ∴DE=2DC=12. 故选:C. 10.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为( ) A.有两个相等的实数根 B.没有实数根 C.有两个不相等的实数根 D.无法判定 【分析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可. 解:x2﹣(k+5)x+k2+2k+25=0, △=[﹣(k+5)]2﹣4××(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16, 不论k为何值,﹣(k﹣3)2≤0, 即△=﹣(k﹣3)2﹣16<0, 所以方程没有实数根, 故选:B. 11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为( ) A.3 B.4 C.5 D.6 【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 解:①由图象可知:a>0,c<0, ∵﹣=1, ∴b=﹣2a<0, ∴abc<0,故①错误; ②∵抛物线与x轴有两个交点, ∴b2﹣4ac>0, ∴b2>4ac,故②正确; ③当x=2时,y=4a+2b+c<0,故③错误; ④当x=﹣1时,y=a﹣b+c>0, ∴3a+c>0,故④正确; ⑤当x=1时,y的值最小,此时,y=a+b+c, 而当x=m时,y=am2+bm+c, 所以a+b+c≤am2+bm+c, 故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确, ⑥当x<﹣1时,y随x的增大而减小,故⑥错误, 故选:A. 12.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为( ) A. B. C. D. 【分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD. 解:∵EN=1, ∴由中位线定理得AM=2, 由折叠的性质可得A′M=2, ∵AD∥EF, ∴∠AMB=∠A′NM, ∵∠AMB=∠A′MB, ∴∠A′NM=∠A′MB, ∴A′N=2, ∴A′E=3,A′F=2 过M点作MG⊥EF于G, ∴NG=EN=1, ∴A′G=1, 由勾股定理得MG==, ∴BE=OF=MG=, ∴OF:BE=2:3, 解得OF=, ∴OD=﹣=. 故选:B. 二、填空题:本大题共8个小题.每小题5分,满分40分. 13.若二次根式在实数范围内有意义,则x的取值范围为 x≥5 . 【分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可. 解:要使二次根式在实数范围内有意义,必须x﹣5≥0, 解得:x≥5, 故答案为:x≥5. 14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为 80° . 【分析】根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解. 解:∵AB=AC,∠B=50°, ∴∠C=∠B=50°, ∴∠A=180°﹣2×50°=80°. 故答案为:80°. 15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为 y= . 【分析】当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=,即可求解. 解:当y=2时,即y=2x=2,解得:x=1, 故该点的坐标为(1,2), 将(1,2)代入反比例函数表达式y=并解得:k=2, 故答案为:y=. 16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为 . 【分析】根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题. 解:∵⊙O是正方形ABCD的内切圆, ∴AE=AB,EG=BC; 根据圆周角的性质可得:∠MFG=∠MEG. ∵sin∠MFG=sin∠MEG==, ∴sin∠MFG=. 故答案为:. 17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 . 【分析】利用完全列举法展示所有可能的结果数,再利用三角形三边的关系得到组成三角形的结果数,然后根据概率公式计算. 解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13; 共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率==. 故答案为. 18.若关于x的不等式组无解,则a的取值范围为 a≥1 . 【分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了可得答案. 解:解不等式x﹣a>0,得:x>2a, 解不等式4﹣2x≥0,得:x≤2, ∵不等式组无解, ∴2a≥2, 解得a≥1, 故答案为:a≥1. 19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得an= (用含n的式子表示). 【分析】观察分母的变化为3、5、7,…,2n+1次幂;分子的变化为:奇数项为n2+1;偶数项为n2﹣1;依此即可求解. 解:由分析可得an=. 故答案为:. 20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD的面积为 14+4 . 【分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可. 解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H. ∵BP=BM=,∠PBM=90°, ∴PM=PB=2, ∵PC=4,PA=CM=2, ∴PC2=CM2+PM2, ∴∠PMC=90°, ∵∠BPM=∠BMP=45°, ∴∠CNB=∠APB=135°, ∴∠APB+∠BPM=180°, ∴A,P,M共线, ∵BH⊥PM, ∴PH=HM, ∴BH=PH=HM=1, ∴AH=2+1, ∴AB2=AH2+BH2=(2+1)2+12=14+4, ∴正方形ABCD的面积为14+4. 故答案为14+4. 三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程. 21.先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1. 【分析】直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案. 解:原式=1﹣÷ =1+• =1+ = =, ∵x=cos30°×=×2=3,y=(π﹣3)0﹣()﹣1=1﹣3=﹣2, ∴原式==0. 22.如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B. (1)求交点P的坐标; (2)求△PAB的面积; (3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围. 【分析】(1)解析式联立,解方程组即可求得交点P的坐标; (2)求得A、B的坐标,然后根据三角形面积公式求得即可; (3)根据图象求得即可. 解:(1)由解得, ∴P(2,﹣2); (2)直线y=﹣x﹣1与直线y=﹣2x+2中,令y=0,则﹣x﹣1=0与﹣2x+2=0, 解得x=﹣2与x=1, ∴A(﹣2,0),B(1,0), ∴AB=3, ∴S△PAB===3; (3)如图所示: 自变量x的取值范围是x<2. 23.如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N. (1)求证:△PBE≌△QDE; (2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形. 【分析】(1)由ASA证△PBE≌△QDE即可; (2)由全等三角形的性质得出EP=EQ,同理△BME≌△DNE(ASA),得出EM=EN,证出四边形PMQN是平行四边形,由对角线PQ⊥MN,即可得出结论. 【解答】(1)证明:∵四边形ABD是平行四边形, ∴EB=ED,AB∥CD, ∴∠EBP=∠EDQ, 在△PBE和△QDE中,, ∴△PBE≌△QDE(ASA); (2)证明:如图所示: ∵△PBE≌△QDE, ∴EP=EQ, 同理:△BME≌△DNE(ASA), ∴EM=EN, ∴四边形PMQN是平行四边形, ∵PQ⊥MN, ∴四边形PMQN是菱形. 24.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克. (1)当售价为55元/千克时,每月销售水果多少千克? (2)当月利润为8750元时,每千克水果售价为多少元? (3)当每千克水果售价为多少元时,获得的月利润最大? 【分析】(1)由月销售量=500﹣(销售单价﹣50)×10,可求解; (2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解; (3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,有二次函数的性质可求解. 解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克; (2)设每千克水果售价为x元, 由题意可得:8750=(x﹣40)[500﹣10(x﹣50)], 解得:x1=65,x2=75, 答:每千克水果售价为65元或75元; (3)设每千克水果售价为m元,获得的月利润为y元, 由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000, ∴当m=70时,y有最大值为9000元, 答:当每千克水果售价为70元时,获得的月利润最大值为9000元. 25.如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE. (1)求证:直线CD是⊙O的切线; (2)求证:OA2=DE•CE. 【分析】(1)连接OD,OE,证明△OAD≌△OED,得∠OAD=∠OED=90°,进而得CD是切线; (2)过D作DF⊥BC于点F,得四边形ABFD为矩形,得DF=20A,再证明CF=CE﹣DE,进而根据勾股定理得结论. 解:(1)连接OD,OE,如图1, 在△OAD和△OED中, , ∴△OAD≌△OED(SSS), ∴∠OAD=∠OED, ∵AM是⊙O的切线, ∴∠OAD=90°, ∴∠OED=90°, ∴直线CD是⊙O的切线; (2)过D作DF⊥BC于点F,如图2,则∠DFB=∠RFC=90°, ∵AM、BN都是⊙O的切线, ∴∠ABF=∠BAD=90°, ∴四边形ABFD是矩形, ∴DF=AB=2OA,AD=BF, ∵CD是⊙O的切线, ∴DE=DA,CE=CB, ∴CF=CB﹣BF=CE﹣DE, ∵DE2=CD2﹣CF2, ∴4OA2=(CE+DE)2﹣(CE﹣DE)2, 即4OA2=4DE•CE, ∴OA2=DE•CE. 26.如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点. (1)求这条抛物线的函数解析式; (2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d; (3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标. 【分析】(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把点B坐标代入求出a即可. (2)由题意P(m,m2﹣m﹣),求出d2,PF2(用m表示)即可解决问题. (3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值==2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可. 【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1, ∵抛物线经过B(0,﹣), ∴﹣=4a﹣1, ∴a=, ∴抛物线的解析式为y=(x﹣2)2﹣1. (2)证明:∵P(m,n), ∴n=(m﹣2)2﹣1=m2﹣m﹣, ∴P(m,m2﹣m﹣), ∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+, ∵F(2,1), ∴PF==, ∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+, ∴d2=PF2, ∴PF=d. (3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N. ∵△DFQ的周长=DF+DQ+FQ,DF是定值==2, ∴DQ+QF的值最小时,△DFQ的周长最小, ∵QF=QH, ∴DQ+DF=DQ+QH, 根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上, ∴DQ+QH的最小值为3, ∴△DFQ的周长的最小值为2+3,此时Q(4,﹣)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省滨州市2020年中考数学试卷 解析版 山东省 滨州市 2020 年中 数学试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文