![点击分享此内容可以赚币 分享](/master/images/share_but.png)
2006年湖北高考文科数学真题及答案.doc
《2006年湖北高考文科数学真题及答案.doc》由会员分享,可在线阅读,更多相关《2006年湖北高考文科数学真题及答案.doc(14页珍藏版)》请在咨信网上搜索。
2006年湖北高考文科数学真题及答案 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。全卷共150分。考试用时120分钟。 第Ⅰ卷(选择题 共50分) 一、选择题:本大题共10小题,每小题5分,共50分散。在每个小题给出的四个选项中,只有一项是符合题目要求的。 1、集合P={x」x2-16<0},Q={x」x=2n,nZ},则PQ= A.{-2,2} B.{-2,2,-4,4} C.{2,0,-2} D.{-2,2,0,-4,4} 2、已知非零向量a、b,若a+2b与a-2b互相垂直,则 A. B. 4 C. D. 2 3、已知=,A∈(0,),则 A. B. C. D. 4、在等比数列{an}中,a1=1,a10=3,则a2a3a4a5a6a7a8a9 A. 81 B. 27 C. D. 243 5、甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么 A. 甲是乙的充分但不必要条件 B. 甲是乙的必要但不充分条件 C. 甲是乙的充要条件 D. 甲既不是乙的充分条件,也不是乙的必要条件 6、关于直线m、n与平面与,有下列四个命题: ①若且,则; ②若且,则; ③若且,则; ④若且,则; 其中真命题的序号是 A.①② B.③④ C.①④ D.②③ 7、设f(x)=,则的定义域为 A. B.(-4,-1)(1,4) C. (-2,-1)(1,2) D. (-4,-2)(2,4) 8、在的展开式中,x的幂的指数是整数的有 A. 3项 B. 4项 C. 5项 D. 6项 9、设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若且,则点的轨迹方程是 A. B. C. D. 10、关于x的方程,给出下列四个命题: ①存在实数,使得方程恰有2个不同的实根; ②存在实数,使得方程恰有4个不同的实根; ③存在实数,使得方程恰有5个不同的实根; ④存在实数,使得方程恰有8个不同的实根; 其中假命题的个数是 A.0 B.1 C.2 D.3 第Ⅱ卷(非选择题 共100分) 注意事项: 第Ⅱ卷用0.5毫米黑色的签字笔或黑色墨水钢笔直接答在答题卡上。答在试题卷上无效。 二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡相应位置上。 11、在ABC中,已知,b=4,A=30°,则sinB= . 12.接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 。(精确到0.01) 13、若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,则k 的取值范围是 . 14、安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是 .(用数字作答) 15、半径为r的圆的面积S(r)=r2,周长C(r)=2r,若将r看作(0,+∞)上的变量,则(r2)`=2r , 式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数。 对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于的式子: 式可以用语言叙述为: 。 三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。 16、(本小题满分12分) 设向量a=(sinx,cosx),b=(cosx,cosx),x∈R,函数f(x)=a·(a+b). (Ⅰ)求函数f(x)的最大值与最小正周期; (Ⅱ)求使不等式f(x)≥成立的x的取值集。 17、(本小题满分12分) 某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组。在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%。登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%。为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本。试确定 (Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例; (Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数。 18、(本小题满分12分) 如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为1,M是底面BC边上的中点,N是侧棱CC1上的点,且CN=2C1N. (Ⅰ)求二面角B1-AM-N的平面角的余弦值; (Ⅱ)求点B1到平面AMN的距离。 19、(本小题满分12分) 设函数f(x)=x3+ax2+bx+c在x=1处取得极值-2,试用c表示a和b,并求f(x)的单调区间。 20、(本小题13分) 设数列的前n项和为,点均在函数y=3x-2的图像上。 (Ⅰ)求数列的通项公式; (Ⅱ)设,是数列的前n项和,求使得对所有都成立的最小正整数m。 21、(本小题满分13分)设分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且为它的右准线。 (Ⅰ)、求椭圆的方程; _ 2 _ 1 _ - 1 _ - 2 _ - 3 _ - 4 _ - 2 _ 2 _ 4 _ B _ A _ M _ N (Ⅱ)、设为右准线上不同于点(4,0)的任意一点,若直线分别与椭圆相交于异于的点,证明点在以为直径的圆内。 (此题不要求在答题卡上画图) 2006年湖北高考文科数学真题参考答案 一、选择题:1.C 2.D 3.A 4.A 5.B 6.D 7.B 8.C 9.D 10.A 一、选择题:本大题共10小题,每小题5分,共50分散。在每个小题给出的四个选项中,只有一项是符合题目要求的。 1、集合P={x|x2-16<0},Q={x|x=2n,nZ},则PQ=(C) A.{-2,2} B.{-2,2,-4,4} C.{-2,0,2} D.{-2,2,0,-4,4} 解:P={x|x2-16<0}={x|-4<x<4},故PQ={-2,0,2},故选C 2、已知非零向量a、b,若a+2b与a-2b互相垂直,则(D) A. B. 4 C. D. 2 解:由a+2b与a-2b互相垂直Þ(a+2b)·(a-2b)=0Þa2-4b2=0 即|a|2=4|b|2Þ|a|=2|b|,故选D 3、已知,A∈(0,),则(A) A. B. C. D. 解:由sin2A=2sinAcosA=>0,又A∈(0,)所以AÎ(0,),所以sinA+cosA>0 又(sinA+cosA)2=1+2sinAcosA=故选A 4、在等比数列{an}中,a1=1,a10=3,则a2a3a4a5a6a7a8a9=( A ) A. 81 B. 27 C. D. 243 解:因为数列{an}是等比数列,且a1=1,a10=3,所以a2a3a4a5a6a7a8a9= (a2a9)(a3a8)(a4a7)(a5a6)=(a1a10)4=34=81,故选A 5、甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么(B) A. 甲是乙的充分但不必要条件 B. 甲是乙的必要但不充分条件 C. 甲是乙的充要条件 D. 甲既不是乙的充分条件,也不是乙的必要条件 解:两个事件是对立事件,则它们一定互斥,反之不成立。故选 B 6、关于直线m、n与平面与,有下列四个命题:(D) ①若且,则; ②若且,则; ③若且,则; ④若且,则; 其中真命题的序号是 A.①② B.③④ C.①④ D.②③ 解:用排除法可得选D 7、设f(x)=,则的定义域为 A. B.(-4,-1)(1,4) C. (-2,-1)(1,2) D. (-4,-2)(2,4) 解:f(x)的定义域是(-2,2),故应有-2<<2且-2<<2解得-4<x<-1或1<x<4 故选B 8、在的展开式中,x的幂的指数是整数的有(C) A. 3项 B. 4项 C. 5项 D. 6项 解:,当r=0,3,6,9,12,15,18,21,24时,x的指数分别是24,20,16,12,8,4,0,-4,-8,其中16,8,4,0,-8均为2的整数次幂,故选C 9、设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A、B两点,点与点关于轴对称,为坐标原点,若,则点P的轨迹方程是( D ) A. B. C. D. 解:设P(x,y),则Q(-x,y),又设A(a,0),B(0,b),则a>0,b>0,于是,由可得a=x,b=3y,所以x>0,y>0又=(-a,b)=(-x,3y),由=1可得 故选D 10、关于x的方程,给出下列四个命题: ①存在实数,使得方程恰有2个不同的实根; ②存在实数,使得方程恰有4个不同的实根; ③存在实数,使得方程恰有5个不同的实根; ④存在实数,使得方程恰有8个不同的实根; 其中假命题的个数是( A ) A.0 B.1 C.2 D.3 解:关于x的方程可化为…………(1) 或(-1<x<1)…………(2) ① 当k=-2时,方程(1)的解为±,方程(2)无解,原方程恰有2个不同的实根 ② 当k=时,方程(1)有两个不同的实根±,方程(2)有两个不同的实根±,即原方程恰有4个不同的实根 ③ 当k=0时,方程(1)的解为-1,+1,±,方程(2)的解为x=0,原方程恰有5个不同的实根 ④ 当k=时,方程(1)的解为±,±,方程(2)的解为±,±,即原方程恰有8个不同的实根 选A 二、填空题:11. 12. 0.94 13. (0,) 14. 78 15.(R3)`=4R2,球的体积函数的导数等于球的表面积函数。 11、在ABC中,已知,b=4,A=30°,则sinB=. 解:由正弦定理易得结论。 12.接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为精确到0.01) 解:P==0.94 13、若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,则k 的取值范围是. 解:由直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点可得直线与圆的位置关系是相交,故圆心到直线的距离小于圆的半径,即<1,解得kÎ(0,) 14、安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是.(用数字作答) 解:分两种情况:(1)不最后一个出场的歌手第一个出场,有种排法 (2)不最后一个出场的歌手不第一个出场,有种排法 故共有78种不同排法 15、半径为r的圆的面积S(r)=r2,周长C(r)=2r,若将r看作(0,+∞)上的变量,则(r2)`=2r , 式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数。 对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于的式子: 式可以用语言叙述为:。 解:V球=,又 故式可填,用语言叙述为“球的体积函数的导数等于球的表面积函数。” 三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。 16、(本小题满分12分) 设向量a=(sinx,cosx),b=(cosx,cosx),x∈R,函数f(x)=a·(a+b). (Ⅰ)求函数f(x)的最大值与最小正周期; (Ⅱ)求使不等式f(x)≥成立的x的取值集。 16.本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的基本知识,以及运用三角函数的图像和性质的能力。 解:(Ⅰ)∵ ∴的最大值为,最小正周期是。 (Ⅱ)由(Ⅰ)知 即成立的的取值集合是. 17、(本小题满分12分) 某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组。在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%。登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%。为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本。试确定 (Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例; (Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数。 17.本小题主要考查分层抽样的概念和运算,以及运用统计知识解决实际问题的能力。 解:(Ⅰ)设登山组人数为,游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有,解得b=50%,c=10%. 故a=100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、 50%、10%。 (Ⅱ)游泳组中,抽取的青年人数为(人);抽取的中年人数为 50%=75(人);抽取的老年人数为10%=15(人)。 18、(本小题满分12分) 如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为1,M是底面BC边上的中点,N是侧棱CC1上的点,且CN=2C1N. (Ⅰ)求二面角B1-AM-N的平面角的余弦值; (Ⅱ)求点B1到平面AMN的距离。 18.本小题主要考查线面关系、二面角和点到平面距离的有关知识及空间想象能力和推理运算能力。考查应用向量知识解决数学问题的能力。 解法1:(Ⅰ)因为M是底面BC边上的中点,所以AMBC,又AMC,所以AM面BC,从而AMM, AMNM,所以MN为二面角,—AM—N的平面角。又M=,MN=, 连N,得N=,在MN中,由余弦定理得。故所求二面角—AM—N的平面角的余弦值为。 (Ⅱ)过在面内作直线,为垂足。又平面,所以AMH。于是H平面AMN,故H即为到平面AMN的距离。在中,H=M。故点到平面AMN的距离为1。 解法2:(Ⅰ)建立如图所示的空间直角坐标系,则(0,0,1),M(0,,0), C(0,1,0), N (0,1,) , A (),所以, ,,。 因为 所以,同法可得。 故﹤﹥为二面角—AM—N的平面角 ∴﹤﹥= 故所求二面角—AM—N的平面角的余弦值为。 (Ⅱ)设n=(x,y,z)为平面AMN的一个法向量,则由得 故可取 设与n的夹角为a,则。 所以到平面AMN的距离为。 19、(本小题满分12分) 设函数f(x)=x3+ax2+bx+c在x=1处取得极值-2,试用c表示a和b,并求f(x)的单调区间。 19.本小题主要考查层数的概念和计算,考查应用导数研究函数性质的方法及推理和运算能力。 解:依题意有而 故 解得 从而 。 令,得或。 由于在处取得极值,故,即。 (1) 若,即,则当时,; 当时,;当时,; 从而的单调增区间为;单调减区间为 (2) 若,即,同上可得, 的单调增区间为;单调减区间为 20、(本小题13分) 设数列的前n项和为,点均在函数y=3x-2的图像上。 (Ⅰ)求数列的通项公式; (Ⅱ)设,是数列的前n项和,求使得对所有都成立的最小正整数m。 20.本小题主要是考查等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力。 解:(I)依题意得,即。 当n≥2时,a; 当n=1时,×-2×1-1-6×1-5 所以。 (II)由(I)得, 故=。 因此,使得﹤成立的m必须满足≤,即m≥10,故满足要求的最小整数m为10。 21、(本小题满分13分) 设分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且为它的右准线。 (Ⅰ)、求椭圆的方程; (Ⅱ)、设为右准线上不同于点(4,0)的任意一点,若直线分别与椭圆相交于异于的点,证明点在以为直径的圆内。 _ 2 _ 1 _ - 1 _ - 2 _ - 3 _ - 4 _ - 2 _ 2 _ 4 _ B _ A _ M _ N (此题不要求在答题卡上画图) 21.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力。 解:(I)依题意得解得 从而b=, 故椭圆方程为。 (II)解法1:由(I)得A(-2,0),B(2,0)。设。 点在椭圆上,。 又点异于顶点 曲三点共线可得. 从面 . 将①式代入②式化简得 >0,>0.于是为锐角,从而为钝角,故点在以为直径的圆内. 解法2:由(Ⅰ)得A(-2,0),B(2,0).设P(4,)(0),M(,),N(,),则直线AP的方程为,直线BP的方程为。 点M、N分别在直线AP、BP上, =(+2),=(-2).从而=(+2)(-2).③ 联立消去y得(27+)+4x+4(-27)=0. ,-2是方程得两根,(-2).,即=. ④ 又.=(-2, ).(-2,)=(-2)(-2)+. ⑤ 于是由③、④式代入⑤式化简可得 .=(-2). N点在椭圆上,且异于顶点A、B,<0. 又,> 0, 从而.<0. 故为钝角,即点B在以MN为直径的圆内. 解法3:由(Ⅰ)得A(-2,0),B(2,0).设M(,),N(,),则-2<<2 , -2<<2.又MN的中点Q的坐标为(), 化简得-=(-2)(-2)+. ⑥ 直线AP的方程为,直线BP的方程为. 点P在准线x=4上, ,即. ⑦ 又M点在椭圆上,+=1,即 ⑧ 于是将⑦、⑧式化简可得-=. 从而B在以MN为直径的圆内.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2006 湖北 高考 文科 数学 答案
![提示](https://www.zixin.com.cn/images/bang_tan.gif)
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文