2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版).doc
《2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版).doc》由会员分享,可在线阅读,更多相关《2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版).doc(8页珍藏版)》请在咨信网上搜索。
2019年普通高等学校招生全国统一考试(全国Ⅰ卷) 理科数学 一、选择题 1.已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N等于( ) A.{x|-4<x<3} B.{x|-4<x<-2} C.{x|-2<x<2} D.{x|2<x<3} 答案 C 解析 ∵N={x|-2<x<3},M={x|-4<x<2}, ∴M∩N={x|-2<x<2},故选C. 2.设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则( ) A.(x+1)2+y2=1 B.(x-1)2+y2=1 C.x2+(y-1)2=1 D.x2+(y+1)2=1 答案 C 解析 ∵z在复平面内对应的点为(x,y), ∴z=x+yi(x,y∈R). ∵|z-i|=1,∴|x+(y-1)i|=1,∴x2+(y-1)2=1.故选C. 3.已知a=log20.2,b=20.2,c=0.20.3,则( ) A.a<b<c B.a<c<b C.c<a<b D.b<c<a 答案 B 解析 ∵a=log20.2<0,b=20.2>1,c=0.20.3∈(0,1),∴a<c<b.故选B. 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是( ) A.165 cm B.175 cm C.185 cm D.190 cm 答案 B 解析 若头顶至咽喉的长度为26 cm,则身高为26+26÷0.618+(26+26÷0.618)÷0.618≈178(cm),此人头顶至脖子下端的长度为26 cm,即头顶至咽喉的长度小于26 cm,所以其身高小于178 cm,同理其身高也大于105÷0.618≈170(cm),故其身高可能是175 cm,故选B. 5.函数f(x)=在[-π,π]上的图象大致为( ) A. B. C. D. 答案 D 解析 ∵f(-x)==-=-f(x),∴f(x)为奇函数,排除A; ∵f(π)==>0,∴排除C; ∵f(1)=,且sin 1>cos 1,∴f(1)>1,∴排除B,故选D. 6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“— —”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( ) A. B. C. D. 答案 A 解析 由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为==20.根据古典概型的概率计算公式得,所求概率P==.故选A. 7.已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为( ) A. B. C. D. 答案 B 解析 设a与b的夹角为α,∵(a-b)⊥b,∴(a-b)·b=0,∴a·b=b2,∴|a|·|b|cos α=|b|2,又|a|=2|b|,∴cos α=,∵α∈[0,π],∴α=,故选B. 8.如图是求的程序框图,图中空白框中应填入( ) A.A= B.A=2+ C.A= D.A=1+ 答案 A 解析 A=,k=1,1≤2成立,执行循环体;A=,k=2,2≤2成立,执行循环体;A=,k=3,3≤2不成立,结束循环,输出A.故空白框中应填入A=.故选A. 9.记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则( ) A.an=2n-5 B.an=3n-10 C.Sn=2n2-8n D.Sn=n2-2n 答案 A 解析 设等差数列{an}的公差为d, ∵∴解得 ∴an=a1+(n-1)d=-3+2(n-1)=2n-5, Sn=na1+d=n2-4n.故选A. 10.已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为( ) A.+y2=1 B.+=1 C.+=1 D.+=1 答案 B 解析 由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ==.在等腰三角形ABF1中,cos 2θ==,因为cos 2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B. 11.关于函数f(x)=sin|x|+|sin x|有下述四个结论: ①f(x)是偶函数; ②f(x)在区间上单调递增; ③f(x)在[-π,π]上有4个零点; ④f(x)的最大值为2. 其中所有正确结论的编号是( ) A.①②④ B.②④ C.①④ D.①③ 答案 C 解析 f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),∴f(x)为偶函数,故①正确;当<x<π时, f(x)=sin x+sin x=2sin x,∴f(x)在上单调递减,故②不正确;f(x)在[-π,π]上的图象如图所示,由图可知函数f(x)在[-π,π]上只有3个零点,故③不正确;∵y=sin|x|与y=|sin x|的最大值都为1且可以同时取到,∴f(x)可以取到最大值2,故④正确.综上,正确结论的编号是①④.故选C. 12.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( ) A.8π B.4π C.2π D.π 答案 D 解析 因为点E,F分别为PA,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE. 取AC的中点D,连接BD,PD,易证AC⊥平面BDP, 所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面PAC,所以PB⊥平面PAC,所以PB⊥PA,PB⊥PC,因为PA=PB=PC,△ABC为正三角形,所以PA⊥PC,即PA,PB,PC两两垂直,将三棱锥P-ABC放在正方体中如图所示.因为AB=2,所以该正方体的棱长为,所以该正方体的体对角线长为,所以三棱锥P-ABC的外接球的半径R=,所以球O的体积V=πR3=π3=π,故选D. 二、填空题 13.曲线y=3(x2+x)ex在点(0,0)处的切线方程为________. 答案 y=3x 解析 因为y′=3(2x+1)ex+3(x2+x)ex=3(x2+3x+1)ex,所以曲线在点(0,0)处的切线的斜率k=y′|x=0=3,所以所求的切线方程为y=3x. 14.记Sn为等比数列{an}的前n项和.若a1=,=a6,则S5=________. 答案 解析 设等比数列{an}的公比为q,因为=a6,所以(a1q3)2=a1q5,所以a1q=1,又a1=,所以q=3,所以S5===. 15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________. 答案 0.18 解析 记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18. 16.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若=,·=0,则C的离心率为________. 答案 2 解析 因为·=0,所以F1B⊥F2B,如图. 因为=,所以点A为F1B的中点,又点O为F1F2的中点,所以OA∥BF2,所以F1B⊥OA,所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因为直线OA,OB为双曲线C的两条渐近线, 所以tan∠BOF2=,tan∠BF1O=. 因为tan∠BOF2=tan(2∠BF1O), 所以=,所以b2=3a2, 所以c2-a2=3a2, 即2a=c,所以双曲线的离心率e==2. 三、解答题 17.△ABC的内角A,B,C的对边分别为a,b,c,设(sin B-sin C)2=sin2A-sin Bsin C. (1)求A; (2)若a+b=2c,求sin C. 解 (1)由已知得sin2B+sin2C-sin2A=sin Bsin C, 故由正弦定理得b2+c2-a2=bc, 由余弦定理得cos A==, 因为0°<A<180°,所以A=60°. (2)由(1)知B=120°-C, 由题设及正弦定理得sin A+sin(120°-C)=2sin C, 即+cos C+sin C=2sinC, 可得cos(C+60°)=-. 由于0°<C<120°,所以sin(C+60°)=, 故sin C=sin(C+60°-60°) =sin(C+60°)cos 60°-cos(C+60°)sin 60° =. 18.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点. (1)证明:MN∥平面C1DE; (2)求二面角A-MA1-N的正弦值. (1)证明 连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=B1C.又因为N为A1D的中点,所以ND=A1D. 由题设知A1B1∥DC且A1B1=DC,可得B1C∥A1D且B1C=A1D,故ME∥ND且ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE. (2)解 由已知可得DE⊥DA,以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz, 则A(2,0,0),A1(2,0,4),M(1,,2),N(1,0,2),=(0,0,-4),=(-1,,-2),=(-1,0,-2),=(0,-,0). 设m=(x,y,z)为平面A1MA的一个法向量,则 所以可得m=(,1,0). 设n=(p,q,r)为平面A1MN的一个法向量,则 所以可取n=(2,0,-1). 于是cos〈m,n〉===, 所以二面角A-MA1-N的正弦值为. 19.已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P. (1)若|AF|+|BF|=4,求l的方程; (2)若=3,求|AB|. 解 设直线l:y=x+t,A(x1,y1),B(x2,y2). (1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=. 由可得9x2+12(t-1)x+4t2=0, 令Δ>0,得t<, 则x1+x2=-. 从而-=,得t=-. 所以l的方程为y=x-. (2)由=3可得y1=-3y2, 由可得y2-2y+2t=0, 所以y1+y2=2,从而-3y2+y2=2,故y2=-1,y1=3, 代入C的方程得x1=3,x2=, 即A(3,3),B, 故|AB|=. 20.已知函数f(x)=sin x-ln(1+x),f′(x)为f(x)的导数,证明: (1)f′(x)的区间上存在唯一极大值点; (2)f(x)有且仅有2个零点. 证明 (1)设g(x)=f′(x),则g(x)=cos x-,g′(x)=-sin x+. 当x∈时,g′(x)单调递减,而g′(0)>0, g′<0,可得g′(x)在有唯一零点,设为α. 则当x∈(-1,α)时,g′(x)>0;当x∈时,g′(x)<0. 所以g(x)在(-1,α)上单调递增,在上单调递减,故g(x)在上存在唯一极大值点,即f′(x)在上存在唯一极大值点. (2)f(x)的定义域为(-1,+∞). ①当x∈(-1,0]时,由(1)知,f′(x)在(-1,0)上单调递增.而f′(0)=0,所以当x∈(-1,0)时,f′(x)<0,故f(x)在(-1,0)上单调递减.又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点; ②当x∈时,由(1)知,f′(x)在(0,α)上单调递增,在上单调递减,而f′(0)=0,f′<0,所以存在β∈,使得f′(β)=0,且当x∈(0,β)时,f′(x)>0;当x∈时,f′(x)<0.故f(x)在(0,β)上单调递增,在上单调递减. 又f(0)=0,f =1-ln>0,所以当x∈时,f(x)>0. 从而,f(x)在上没有零点; ③当x∈时,f′(x)<0,所以f(x)在上单调递减.而f >0,f(π)<0,所以f(x)在上有唯一零点; ④当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点. 综上,f(x)有且仅有2个零点. 21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X. (1)求X的分布列; (2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,pi=api-1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8. (ⅰ)证明:{pi+1-pi}(i=0,1,2,…,7)为等比数列; (ⅱ)求p4,并根据p4的值解释这种试验方案的合理性. (1)解 X的所有可能取值为-1,0,1. P(X=-1)=(1-α)β, P(X=0)=αβ+(1-α)(1-β), P(X=1)=α(1-β). 所以X的分布列为 (2)(ⅰ)证明 由(1)得a=0.4,b=0.5,c=0.1. 因此pi=0.4pi-1+0.5pi+0.1pi+1,故0.1(pi+1-pi)=0.4(pi-pi-1),即pi+1-pi=4(pi-pi-1). 又因为p1-p0=p1≠0,所以{pi+1-pi}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列. (ⅱ)解 由(ⅰ)可得 p8=p8-p7+p7-p6+…+p1-p0+p0 =(p8-p7)+(p7-p6)+…+(p1-p0) =p1. 由于p8=1,故p1=,所以 p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0) =p1 =. p4表示题干中的实验方案最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理. 22.[选修4-4:坐标系与参数方程] 在直角坐标系xOy中,曲线C的参数方程为 (t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcos θ+ρsin θ+11=0. (1)求C和l的直角坐标方程; (2)求C上的点到l距离的最小值. 解 (1)因为-1<≤1,且x2+2=2+=1,所以C的直角坐标方程为x2+=1(x≠-1). l的直角坐标方程为2x+y+11=0. (2)由(1)可设C的参数方程为 (α为参数,-π<α<π). C上的点到l的距离为 =. 当α=-时,4cos+11取得最小值7, 故C上的点到l距离的最小值为. 23.[选修4-5:不等式选讲] 已知a,b,c为正数,且满足abc=1.证明: (1)++≤a2+b2+c2; (2)(a+b)3+(b+c)3+(c+a)3≥24. 证明 (1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有 a2+b2+c2≥ab+bc+ca==++. 所以++≤a2+b2+c2. (2)因为a,b,c为正数且abc=1,故有 (a+b)3+(b+c)3+(c+a)3≥3 =3(a+b)(b+c)(a+c) ≥3×(2)×(2)×(2) =24. 所以(a+b)3+(b+c)3+(c+a)3≥24.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019年全国统一高考数学试卷理科新课标含解析版 2019 全国 统一 高考 数学试卷 理科 新课 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文