2017年海南省中考数学试卷(含解析版).doc
《2017年海南省中考数学试卷(含解析版).doc》由会员分享,可在线阅读,更多相关《2017年海南省中考数学试卷(含解析版).doc(25页珍藏版)》请在咨信网上搜索。
2017年海南省中考数学试卷 一、选择题(本大题共14小题,每小题3分,共42分) 1.(3分)2017的相反数是( ) A.﹣2017 B.2017 C.﹣ D. 2.(3分)已知a=﹣2,则代数式a+1的值为( ) A.﹣3 B.﹣2 C.﹣1 D.1 3.(3分)下列运算正确的是( ) A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a9 4.(3分)如图是一个几何体的三视图,则这个几何体是( ) A.三棱柱 B.圆柱 C.圆台 D.圆锥 5.(3分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为( ) A.45° B.60° C.90° D.120° 6.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是( ) A.(﹣3,2) B.(2,﹣3) C.(1,﹣2) D.(﹣1,2) 7.(3分)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为( ) A.5 B.6 C.7 D.8 8.(3分)若分式的值为0,则x的值为( ) A.﹣1 B.0 C.1 D.±1 9.(3分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表: 年龄(岁) 12 13 14 15 6 人数 1 4 3 5 7 则这20名同学年龄的众数和中位数分别是( ) A.15,14 B.15,15 C.16,14 D.16,15 10.(3分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( ) A. B. C. D. 11.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是( ) A.14 B.16 C.18 D.20 12.(3分)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为( ) A.25° B.50° C.60° D.80° 13.(3分)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A.3 B.4 C.5 D.6 14.(3分)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是( ) A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16 二、填空题(本大题共4小题,每小题4分,共16分) 15.(4分)不等式2x+1>0的解集是 . 16.(4分)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 y2(填“>”,“<”或“=”) 17.(4分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是 . 18.(4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是 . 三、解答题(本大题共62分) 19.(10分)计算; (1)﹣|﹣3|+(﹣4)×2﹣1; (2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1) 20.(8分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米. 21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图. 请结合以上信息解答下列问题: (1)m= ; (2)请补全上面的条形统计图; (3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ; (4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动. 22.(8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2) 23.(12分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G. (1)求证:△CDE≌△CBF; (2)当DE=时,求CG的长; (3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由. 24.(16分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0). (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N. ①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由; ②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由. 2017年海南省中考数学试卷 参考答案与试题解析 一、选择题(本大题共14小题,每小题3分,共42分) 1.(3分)(2017•海南)2017的相反数是( ) A.﹣2017 B.2017 C.﹣ D. 【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题. 【解答】解:∵2017+(﹣2017)=0, ∴2017的相反数是(﹣2017), 故选 A. 【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键. 2.(3分)(2017•海南)已知a=﹣2,则代数式a+1的值为( ) A.﹣3 B.﹣2 C.﹣1 D.1 【分析】把a的值代入原式计算即可得到结果. 【解答】解:当a=﹣2时,原式=﹣2+1=﹣1, 故选C 【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 3.(3分)(2017•海南)下列运算正确的是( ) A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a9 【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意; B、同底数幂的除法底数不变指数相减,故B符合题意; C、同底数幂的乘法底数不变指数相加,故C不符合题意; D、幂的乘方底数不变指数相乘,故D不符合题意; 故选:B. 【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键. 4.(3分)(2017•海南)如图是一个几何体的三视图,则这个几何体是( ) A.三棱柱 B.圆柱 C.圆台 D.圆锥 【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥, 则这个几何体的形状是圆锥. 故选:D. 【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查. 5.(3分)(2017•海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为( ) A.45° B.60° C.90° D.120° 【解答】解:∵c⊥a, ∴∠2=90°, ∵a∥b, ∴∠2=∠1=90°. 故选:C. 【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键. 6.(3分)(2017•海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是( ) A.(﹣3,2) B.(2,﹣3) C.(1,﹣2) D.(﹣1,2) 【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3). 故选:B. 【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键. 7.(3分)(2017•海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为( ) A.5 B.6 C.7 D.8 【解答】解:∵2000000=2×106, ∴n=6. 故选:B. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 8.(3分)(2017•海南)若分式的值为0,则x的值为( ) A.﹣1 B.0 C.1 D.±1 【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案. 【解答】解:∵分式的值为0, ∴x2﹣1=0,x﹣1≠0, 解得:x=﹣1. 故选:A. 【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键. 9.(3分)(2017•海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表: 年龄(岁) 12 13 14 15 16 人数 1 4 3 5 7 则这20名同学年龄的众数和中位数分别是( ) A.15,14 B.15,15 C.16,14 D.16,15 【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人, ∴出现次数最多的数据是16, ∴同学年龄的众数为16岁; ∵一共有20名同学, ∴因此其中位数应是第10和第11名同学的年龄的平均数, ∴中位数为(15+15)÷2=15, 故中位数为15. 故选D. 10.(3分)(2017•海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( ) A. B. C. D. 【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案. 【解答】解:列表如下: 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4) (2,4) (3,4) (4,4) ∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果, ∴两个转盘的指针都指向2的概率为, 故选:D. 【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 11.(3分)(2017•海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是( ) A.14 B.16 C.18 D.20 【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案. 【解答】解:∵在菱形ABCD中,AC=8,BD=6, ∴AB=BC,∠AOB=90°,AO=4,BO=3, ∴BC=AB==5, ∴△ABC的周长=AB+BC+AC=5+5+8=18. 故选:C. 【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键. 12.(3分)(2017•海南)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为( ) A.25° B.50° C.60° D.80° 【解答】解:∵OA=OB,∠BAO=25°, ∴∠B=25°. ∵AC∥OB, ∴∠B=∠CAB=25°, ∴∠BOC=2∠CAB=50°.(同弧所对的圆心角等于圆周角的2倍) 故选B. 【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键. 13.(3分)(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A.3 B.4 C.5 D.6 【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可. 【解答】解:如图所示: 当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形. 故选B. 【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键. 14.(3分)(2017•海南)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是( ) A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16 【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论. 【解答】解:∵△ABC是直角三角形, ∴当反比例函数y=经过点A时k最小,经过点C时k最大, ∴k最小=1×2=2,k最大=4×4=16, ∴2≤k≤16. 故选C. 【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键. 二、填空题(本大题共4小题,每小题4分,共16分) 15.(4分)(2017•海南)不等式2x+1>0的解集是 x>﹣ . 【分析】利用不等式的基本性质,将不等式两边同时减去1再除以2,不等号的方向不变;即可得到不等式的解集. 【解答】解:原不等式移项得, 2x>﹣1, 系数化1得, x>﹣. 故本题的解集为x>﹣. 16.(4分)(2017•海南)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 < y2(填“>”,“<”或“=”) 【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解. 【解答】解:∵一次函数y=x﹣1中k=1, ∴y随x值的增大而增大. ∵x1<x2, ∴y1<y2. 故答案为:<. 【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键. 17.(4分)(2017•海南)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是 . 【分析】根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可. 【解答】解:由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5, ∴∠EFC+∠AFB=90°, ∵∠B=90°, ∴∠BAF+∠AFB=90°, ∴∠EFC=∠BAF, cos∠BAF==, ∴cos∠EFC=, 故答案为:. 【点评】本题考查的是翻转变换的性质、余弦的概念,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键. 18.(4分)(2017•海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是 . 【分析】根据中位线定理得到MN的长最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值. 【解答】解:如图,∵点M,N分别是AB,AC的中点, ∴MN=BC, ∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大, 连接BO并延长交⊙O于点C′,连接AC′, ∵BC′是⊙O的直径, ∴∠BAC′=90°. ∵∠ACB=45°,AB=5, ∴∠AC′B=45°, ∴BC′===5, ∴MN最大=. 故答案为:. 【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大. 三、解答题(本大题共62分) 19.(10分)(2017•海南)计算; (1)﹣|﹣3|+(﹣4)×2﹣1; (2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1) 【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1; (2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2. 【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键. 20.(8分)(2017•海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米. 【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案. 【解答】解:设甲种车辆一次运土x立方米,乙车辆一次运土y立方米, 由题意得,, 解得:. 答:甲种车辆一次运土8立方米,乙车辆一次运土12立方米. 【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键. 21.(8分)(2017•海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图. 请结合以上信息解答下列问题: (1)m= 150 ; (2)请补全上面的条形统计图; (3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 36° ; (4)已知该校共有1200名学生,请你估计该校约有 240 名学生最喜爱足球活动. 【分析】(1)根据图中信息列式计算即可; (2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可; (3)360°×乒乓球”所占的百分比即可得到结论; (4)根据题意计算即可. 【解答】解:(1)m=21÷14%=150, (2)“足球“的人数=150×20%=30人, 补全上面的条形统计图如图所示; (3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°; (4)1200×20%=240人, 答:估计该校约有240名学生最喜爱足球活动. 故答案为:150,36°,240. 【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键. 22.(8分)(2017•海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2) 【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可. 【解答】解:设BC=x米, 在Rt△ABC中, ∠CAB=180°﹣∠EAC=50°, AB=≈==x, 在Rt△EBD中, ∵i=DB:EB=1:1, ∴BD=BE, ∴CD+BC=AE+AB, 即2+x=4+x, 解得x=12, 即BC=12, 答:水坝原来的高度为12米. 【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般. 23.(12分)(2017•海南)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G. (1)求证:△CDE≌△CBF; (2)当DE=时,求CG的长; (3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由. 【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°, ∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°, ∵CF⊥CE, ∴∠ECF=90°, ∴∠3+∠2=∠ECF=90°, ∴∠1=∠3, 在△CDE和△CBF中,, ∴△CDE≌△CBF, (2)在正方形ABCD中,AD∥BC, ∴△GBF∽△EAF, ∴, 由(1)知,△CDE≌△CBF, ∴BF=DE=, ∵正方形的边长为1, ∴AF=AB+BF=,AE=AD﹣DE=, ∴, ∴BG=, ∴CG=BC﹣BG=; (3)不能, 理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG, ∴AD﹣AE=BC﹣CG, ∴DE=BG, 由(1)知,△CDE≌△ECF, ∴DE=BF,CE=CF, ∴△GBF和△ECF是等腰直角三角形, ∴∠GFB=45°,∠CFE=45°, ∴∠CFA=∠GFB+∠CFE=90°, 此时点F与点B重合,点D与点E重合,与题目条件不符, ∴点E在运动过程中,四边形CEAG不能是平行四边形. 24.(16分)(2017•海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0). (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N. ①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由; ②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由. 【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式; (2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值; ②当△CNQ与△PBM相似时有或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标. 【解答】解: (1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0), ∴,解得, ∴该抛物线对应的函数解析式为y=x2﹣x+3; (2)①∵点P是抛物线上的动点且位于x轴下方, ∴可设P(t,t2﹣t+3)(1<t<5), ∵直线PM∥y轴,分别与x轴和直线CD交于点M、N, ∴M(t,0),N(t,t+3), ∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+ 联立直线CD与抛物线解析式可得,解得或, ∴C(0,3),D(7,), 分别过C、D作直线PN的直线,垂足分别为E、F,如图1, 则CE=t,DF=7﹣t, ∴S△PCD=S△PCN+S△PDN=PN•CE+PN•DF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+, ∴当t=时,△PCD的面积有最大值,最大值为; ②存在. ∵∠CQN=∠PMB=90°, ∴当△CNQ与△PBM相似时,有或=两种情况, ∵CQ⊥PM,垂足为Q, ∴Q(t,3),且C(0,3),N(t,t+3), ∴CQ=t,NQ=t+3﹣3=t, ∴=, ∵P(t,t2﹣t+3),M(t,0),B(5,0), ∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3, 当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,); 当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣); 综上可知存在满足条件的点P,其坐标为(2,)或(,﹣). 【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标表示出△PCD的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大. 第25页(共25页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 海南省 中考 数学试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文