2007年辽宁高考文科数学真题及答案.doc
《2007年辽宁高考文科数学真题及答案.doc》由会员分享,可在线阅读,更多相关《2007年辽宁高考文科数学真题及答案.doc(10页珍藏版)》请在咨信网上搜索。
2007年辽宁高考文科数学真题及答案 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷(选择题 共60分) 参考公式: 如果事件互斥,那么 球的表面积公式 如果事件相互独立,那么 其中表示球的半径 球的体积公式 如果事件在一次试验中发生的概率是,那么 次独立重复试验中恰好发生次的概率 其中表示球的半径 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合,,则( ) A. B. C. D. 2.若函数的反函数图象过点,则函数的图象必过点( ) A. B. C. D. 3.双曲线的焦点坐标为( ) A., B., C., D., 4.,且,则向量的夹角为( ) A.0 B. C. D. 5.设等差数列的前项和为,若,,则( ) A.63 B.45 C.36 D.27 6.若是两条不同的直线,是三个不同的平面,则下列命题中的真命题是( ) A.若,则 B.若,,则 C.若,,则 D.若,,,则 7.若函数的图象按向量平移后,得到函数的图象,则向量( ) A. B. C. D. 8.已知变量满足约束条件则的取值范围是( ) A. B. C. D. 9.函数的单调增区间为( ) A. B. C. D. 10.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球.若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为( ) A. B. C. D. 11.设是两个命题:,则是的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 12.将数字1,2,3,4,5,6拼成一列,记第个数为,若,,,,则不同的排列方法种数为( ) A.18 B.30 C.36 D.48 第Ⅱ卷(非选择题 共90分) 二、填空题:本大题共4小题,每小题4分,共16分. 13.已知函数为奇函数,若,则 . 14.展开式中含的整数次幂的项的系数之和为 (用数字作答). 15.若一个底面边长为,棱长为的正六棱柱的所有顶点都在一个球的面上,则此球的体积为 . 16.设椭圆上一点到左准线的距离为10,是该椭圆的左焦点,若点满足,则 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示: 分组 [500,900) [900,1100) [1100,1300) [1300,1500) [1500,1700) [1700,1900) [1900,) 频数 48 121 208 223 193 165 42 频率 (I)将各组的频率填入表中; (II)根据上述统计结果,计算灯管使用寿命不足1500小时的频率; (III)该公司某办公室新安装了这种型号的灯管3支,若将上述频率作为概率,试求至少有2支灯管的使用寿命不足1500小时的概率. 18.(本小题满分12分) 如图,在直三棱柱中,,,分别为棱的中点,为棱上的点,二面角为. (I)证明:; (II)求的长,并求点到平面的距离. 19.(本小题满分12分) 已知函数(其中) (I)求函数的值域; (II)若函数的图象与直线的两个相邻交点间的距离为,求函数的单调增区间. 20.(本小题满分12分) 已知数列,满足,,且() (I)令,求数列的通项公式; (II)求数列的通项公式及前项和公式. 21.(本小题满分14分) 已知正三角形的三个顶点都在抛物线上,其中为坐标原点,设圆是的内接圆(点为圆心) (I)求圆的方程; (II)设圆的方程为,过圆上任意一点分别作圆的两条切线,切点为,求的最大值和最小值. 22.(本小题满分12分) 已知函数,,且对任意的实数均有,. (I)求函数的解析式; (II)若对任意的,恒有,求的取值范围. 试题答案与评分参考 说明: 一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。 二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变试题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答较严重的错误,就不再给分。 三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。 四、只给整数分数,选择题和填空题不给中间分。 一、选择题:本在题考查基本知识和基本运算。每小题5分,满分60分。 (1)C(2)A(3)C(4)D(5)B(6)B(7)C(8)A(9)D(10)D(11)A (12)B 二、填空题:本题考查基本知识和基本运算,每小题4分,共16分。 (13)1(14)72(15)4n (16)2 三、解答题 (17)本小题主要考查频率、概率、总体分布的估计、独立重复试验等基础知识,考查运用统计的有关知识解决实际问题的能力,满分12分. (Ⅰ)解: 分组 [500,900] [900,1100] [1100,1300] [1300,1500] [1500,1700] [1700,1900] [1900,+∞] 频数 48 121 208 223 193 165 42 频率 0.048 0.121 0.208 0.223 0.193 0.165 0.042 ……4分 (Ⅱ)解:由(Ⅰ)可得0.048+0.121+0.208+0.223=0.6,所以灯管使用寿命不是1500小时的频率为0.6.……8分 (Ⅲ)解:由(Ⅱ)知:1只灯管使用寿命不足1500小时的概率P=0.6.根据在n次独立重复试验中事件恰好发生k次的概率公式可得 。 所以至少有2支灯管的使用寿命不足1500小时的概率是0.648.……12分 (18)本小题主要考查空间中的线面关系、解三角形等基础知识,考查空间想象能力与思维能力。满分12分。 (Ⅰ)证明:连结CD, ∵三棱柱ABC-A1B1C1是直三棱柱。 ∴CC1⊥平面ABC, ∴CD为C1D在平面ABC内的射影, ∵△ABC中,AC=BC,D为AB中点。 ∴AB⊥CD, ∴AB⊥C1D, ∵A1B1∥AB, ∴A1B1⊥C1D。 (Ⅱ)解法一:过点A作CE的平行线,交ED的延长线于F,连结MF. ∵D、E分别为AB、BC的中点。 ∴DE∥AC。 又∵AF∥CE,CE⊥AC, ∴AF⊥DE。 ∵MA⊥平面ABC, ∴AF为MF在平面ABC内的射影。 ∴MF⊥DE, ∴∠MFA为二面角M-DE-A的平面角,∠MFA=30°。 在Rt△MAF中,AF=, ∴AM=. 作AC⊥MF,垂足为G。 ∵MF⊥DE,AF⊥DE, ∴DE⊥平面AMF, ∴平面MDE⊥平面AMF. ∴AG⊥平面MDE 在Rt△GAF中,∠GFA=30°,AF=, ∴AG=,即A到平面MDE的距离为。 ∵CA∥DE,∴CA∥平面MDE, ∴C到平面MDE的距离与A到平面MDE的距离相等,为。 解法二:过点A作CE的平行线,交ED的延长线于F,连结MF, ∵D、E分别为AB、CB的中点, DE∥AC, 又∵AF∥CE,CE⊥AC, ∴AF⊥DE, ∵MA⊥平面ABC, ∴AF为MF在平面ABC内的射影, ∴MF⊥DE, ∴∠MFA为二面角M-DE-A的平面角,∠MFA=30°。 在Rt△MAF中,AF=BC=, ∴AM=.……8分 设C到平面MDE的距离为h。 ∵, ∴, , , , ∴h=,即C到平面MDE的距离为。……12分 19.本小题主要考查三角函数公式,三角函数图象和性质等基础知识,考查综合运用三角函数有关知识的能力。满分12分。 (Ⅰ)解: ……5分 由-1≤≤1,得-3≤≤1。 可知函数的值域为[-3,1].……7分 (Ⅱ)解:由题设条件及三角函数图象和性质可知,的周其为w,又由w>0,得,即得w=2。 于是有,再由,解得 。 所以的单调增区间为[] (20)本小题主要考查等差数列、等比数列等基础知识,考查基本运算能力,满分12分。 (Ⅰ)解:由题设得,即 (Ⅱ)解:由题设得,令,则 。 易知{d}是首项,公比为的等比数列,通项公式为 d=……8分 由于解得 a=。……10分 求和得 。……12分 (21)本小题主要考查平面向量,圆与抛物线的方程及几何性质等基本知识,考查综合运用解析几何知识解决问题的能力。满分14分。 (Ⅰ)解法一:设A、B两点坐标分别为(),(),由题设知 , 解得, 所以A(6,2),B(6,-2)或A(6,-2),B(6,2)。 设圆心C的坐标为(r,0),则,所以圆C的方程为 ……4分 解法二:设A、B两点坐标分别为(x1,y1),(x2,y2),由题设知 又因为,可得,即 。 由,可知x1=0,故A、B两点关于x轴对称,所以圆心C在x轴上, 设C点的坐标为(r,0),则A点的坐标为(),于是有,解得r=4,所以圆C的方程为 。……4分 (Ⅱ)解:设∠ECF=2a,则 ……8分 在Rt△PCE中,,由圆的几何性质得- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2007 辽宁 高考 文科 数学 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文