2020年青海省中考数学试卷(含解析版).doc
《2020年青海省中考数学试卷(含解析版).doc》由会员分享,可在线阅读,更多相关《2020年青海省中考数学试卷(含解析版).doc(32页珍藏版)》请在咨信网上搜索。
2020年青海省中考数学试卷 一、填空题(本大题共12小题15空,每空2分,共30分). 1.(4分)(﹣3+8)的相反数是 ;的平方根是 . 2.(4分)分解因式:﹣2ax2+2ay2= ;不等式组的整数解为 . 3.(2分)岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为 米.(1纳米=10﹣9米) 4.(2分)如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD的周长为 . 5.(2分)如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于点D,且△DBC的周长是24cm,则BC= cm. 6.(2分)如图,在矩形ABCD中,对角线AC,BD相交于点O,已知∠BOC=120°,DC=3cm,则AC的长为 cm. 7.(2分)已知a,b,c为△ABC的三边长.b,c满足(b﹣2)2+|c﹣3|=0,且a为方程|x﹣4|=2的解,则△ABC的形状为 三角形. 8.(2分)在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=5.请你写出正确的一元二次方程 . 9.(2分)已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为 cm. 10.(2分)如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r= . 11.(2分)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=,如:3⊕2==,那么12⊕4= . 12.(4分)观察下列各式的规律: ①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1. 请按以上规律写出第4个算式 . 用含有字母的式子表示第n个算式为 . 二、单项选择题(本大题共8小题,每小题3分,共24分.请将正确选项的序号填入下面相应题号的表格内). 13.(3分)下面是某同学在一次测试中的计算: ①3m2n﹣5mn2=﹣2mn; ②2a3b•(﹣2a2b)=﹣4a6b; ③(a3)2=a5; ④(﹣a3)÷(﹣a)=a2. 其中运算正确的个数为( ) A.4个 B.3个 C.2个 D.1个 14.(3分)等腰三角形的一个内角为70°,则另外两个内角的度数分别是( ) A.55°,55° B.70°,40°或70°,55° C.70°,40° D.55°,55°或70°,40° 15.(3分)如图,根据图中的信息,可得正确的方程是( ) A.π×()2x=π×()2×(x﹣5) B.π×()2x=π×()2×(x+5) C.π×82x=π×62×(x+5) D.π×82x=π×62×5 16.(3分)剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( ) A. B. C. D. 17.(3分)在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有( ) A.4个 B.8个 C.12个 D.17个 18.(3分)若ab<0,则正比例函数y=ax与反比例函数y=在同一平面直角坐标系中的大致图象可能是( ) A. B. C. D. 19.(3分)如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是( ) A.3.6 B.1.8 C.3 D.6 20.(3分)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( ) A. B. C. D. 三、(本大题共3小题,第21题5分,第22题5分,第23题8分,共18分). 21.(5分)计算:()﹣1+|1﹣tan45°|+(π﹣3.14)0﹣. 22.(5分)化简求值:(﹣)÷;其中a2﹣a﹣1=0. 23.(8分)如图,在Rt△ABC中,∠C=90°. (1)尺规作图:作Rt△ABC的外接圆⊙O;作∠ACB的角平分线交⊙O于点D,连接AD.(不写作法,保留作图痕迹) (2)若AC=6,BC=8,求AD的长. 四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分). 24.(9分)某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A测得发射塔顶端P点的仰角是45°,向前走60米到达B点测得P点的仰角是60°,测得发射塔底部Q点的仰角是30°.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1米,≈1.732) 25.(8分)如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD∥OC交⊙O于点D,连接CD. (1)求证:CD是⊙O的切线. (2)若AD=4,直径AB=12,求线段BC的长. 26.(9分)每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题: (1)该校八年级共有 名学生,“优秀”所占圆心角的度数为 . (2)请将图1中的条形统计图补充完整. (3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格? (4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率. 五、(本大题共两小题,第27题10分,第28题12分,共22分) 27.(10分)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G. 特例感知: (1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明. 猜想论证: (2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想. 联系拓展: (3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明) 28.(12分)如图1(注:与图2完全相同)所示,抛物线y=﹣+bx+c经过B、D两点,与x轴的另一个交点为A,与y轴相交于点C. (1)求抛物线的解析式. (2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索) (3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索) 2020年青海省中考数学试卷 参考答案与试题解析 一、填空题(本大题共12小题15空,每空2分,共30分). 1.(4分)(﹣3+8)的相反数是 ﹣5 ;的平方根是 ±2 . 【考点】21:平方根;22:算术平方根;28:实数的性质.菁优网版权所有 【专题】511:实数;61:数感. 【分析】根据相反数的定义,只有符号不同的两个数叫做互为相反数解答; 先求出=4,再根据平方根的定义解答. 【解答】解:﹣3+8=5,5的相反数是﹣5;=4,4的平方根是±2. 故答案为:﹣5;±2. 【点评】本题考查了实数的性质,主要利用了相反数的定义,平方根的定义,是基础题,熟记概念与性质是解题的关键. 2.(4分)分解因式:﹣2ax2+2ay2= ﹣2a(x﹣y)(x+y)或2a(y+x)(y﹣x) ;不等式组的整数解为 2 . 【考点】55:提公因式法与公式法的综合运用;CC:一元一次不等式组的整数解.菁优网版权所有 【专题】512:整式;524:一元一次不等式(组)及应用;66:运算能力. 【分析】直接提取公因式﹣2a,进而利用平方差公式分解因式即可;分别解不等式,进而得出不等式组的解集. 【解答】解:﹣2ax2+2ay2=﹣2a(x2﹣y2) =﹣2a(x﹣y)(x+y); 或原式=2a(y+x)(y﹣x); , 解①得:x≥2, 解②得:x<3, ∴2≤x<3, ∴不等式的整数解为:2. 故答案为:﹣2a(x﹣y)(x+y)或2a(y+x)(y﹣x);2. 【点评】此题主要考查了提取公因式法以及公式法分解因式和不等式组的解法,正确解不等式组是解题关键. 3.(2分)岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为 1.25×10﹣7 米.(1纳米=10﹣9米) 【考点】1J:科学记数法—表示较小的数.菁优网版权所有 【专题】511:实数;61:数感. 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:125纳米=125×10﹣9米=1.25×10﹣7米. 故答案为:1.25×10﹣7. 【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.(2分)如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD的周长为 12 . 【考点】Q2:平移的性质.菁优网版权所有 【专题】558:平移、旋转与对称;64:几何直观. 【分析】利用平移的性质得到AD=CF=2,AC=DF,而AB+BC+AC=8,所以AB+BC+DF=8,然后计算四边形ABFD的周长. 【解答】解:∵△ABC沿BC边向右平移2个单位,得到△DEF, ∴AD=CF=2,AC=DF, ∵△ABC的周长为8, ∴AB+BC+AC=8, ∴AB+BC+DF=8, ∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+DF+AD+CF=8+2+2=12. 故答案为12. 【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等. 5.(2分)如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于点D,且△DBC的周长是24cm,则BC= 10 cm. 【考点】KG:线段垂直平分线的性质.菁优网版权所有 【分析】由边AB的垂直平分线与AC交于点D,故AD=BD,于是将△BCD的周长转化为BC与边长AC的和来解答. 【解答】解:∵C△DBC=24cm, ∴BD+DC+BC=24cm①, 又∵MN垂直平分AB, ∴AD=BD②, 将②代入①得:AD+DC+BC=24cm, 即AC+BC=24cm, 又∵AC=14cm, ∴BC=24﹣14=10cm. 故填10. 【点评】本题考查了垂直平分线的性质;此题将垂直平分线的性质与三角形的周长问题相结合,体现了转化思想在解题时的巨大作用. 6.(2分)如图,在矩形ABCD中,对角线AC,BD相交于点O,已知∠BOC=120°,DC=3cm,则AC的长为 6 cm. 【考点】LB:矩形的性质.菁优网版权所有 【专题】556:矩形 菱形 正方形;66:运算能力. 【分析】根据矩形的性质即可求出答案. 【解答】解:在矩形ABCD中, ∴OB=OC, ∴∠OCB=∠OBC, ∵∠BOC=120°, ∴∠OCB=30°, ∵DC=3cm, ∴AB=CD=3cm, 在Rt△ACB中, AC=2AB=6cm, 故答案为:6 【点评】本题考查矩形,解题的关键是熟练运用矩形的性质以及含30度角的直角三角形的性质,本题属于基础题型. 7.(2分)已知a,b,c为△ABC的三边长.b,c满足(b﹣2)2+|c﹣3|=0,且a为方程|x﹣4|=2的解,则△ABC的形状为 等腰 三角形. 【考点】16:非负数的性质:绝对值;1F:非负数的性质:偶次方;87:含绝对值符号的一元一次方程;KI:等腰三角形的判定.菁优网版权所有 【专题】554:等腰三角形与直角三角形;67:推理能力. 【分析】利用绝对值的性质以及偶次方的性质得出b,c的值,进而利用三角形三边关系得出a的值,进而判断出其形状. 【解答】解:∵(b﹣2)2+|c﹣3|=0, ∴b﹣2=0,c﹣3=0, 解得:b=2,c=3, ∵a为方程|x﹣4|=2的解, ∴a﹣4=±2, 解得:a=6或2, ∵a、b、c为△ABC的三边长,b+c<6, ∴a=6不合题意,舍去, ∴a=2, ∴a=b=2, ∴△ABC是等腰三角形, 故答案为:等腰. 【点评】此题主要考查了等腰三角形的判定,三角形三边关系以及绝对值的性质和偶次方的性质,得出a的值是解题关键. 8.(2分)在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=5.请你写出正确的一元二次方程 x2﹣6x+6=0 . 【考点】A2:一元二次方程的一般形式;A3:一元二次方程的解;AB:根与系数的关系.菁优网版权所有 【专题】523:一元二次方程及应用;69:应用意识. 【分析】利用根与系数的关系得到2×3=c,1+5=﹣b,然后求出b、c即可. 【解答】解:根据题意得2×3=c, 1+5=﹣b, 解得b=﹣6,c=6, 所以正确的一元二次方程为x2﹣6x+6=0. 故答案为x2﹣6x+6=0. 【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=. 9.(2分)已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为 1或7 cm. 【考点】JC:平行线之间的距离;KQ:勾股定理;M2:垂径定理.菁优网版权所有 【专题】559:圆的有关概念及性质;64:几何直观. 【分析】作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,利用平行线的性质OF⊥CD,根据垂径定理得到AE=BE=4,CF=DF=3,则利用勾股定理可计算出OE=3,OF=4,讨论:当点O在AB与CD之间时,EF=OF+OE;当点O不在AB与CD之间时,EF=OF﹣OE. 【解答】解:作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图, ∵AB∥CD,OE⊥AB, ∴OF⊥CD, ∴AE=BE=AB=4cm,CF=DF=CD=3cm, 在Rt△OAE中,OE===3cm, 在Rt△OCF中,OF===4cm, 当点O在AB与CD之间时,如图1,EF=OF+OE=4+3=7cm; 当点O不在AB与CD之间时,如图2,EF=OF﹣OE=4﹣3=1cm; 综上所述,AB与CD之间的距离为1cm或7cm. 故答案为1或7. 【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.注意分类讨论. 10.(2分)如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r= 1 . 【考点】MI:三角形的内切圆与内心.菁优网版权所有 【专题】17:推理填空题;55C:与圆有关的计算;66:运算能力;67:推理能力. 【分析】在△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理可得AB=5,设△ABC的内切圆与三条边的切点分别为D、E、F,连接OD、OE、OF,可得OD⊥AB,OE⊥BC,OF⊥AC,可得矩形EOFC,再根据切线长定理可得CE=CF,所以矩形EOFC是正方形,可得CE=CF=r,所以AF=AD=3﹣r,BE=BD=4﹣r,进而可得△ABC的内切圆半径r的值. 【解答】解:在△ABC中,∠C=90°,AC=3,BC=4, 根据勾股定理,得AB=5, 如图,设△ABC的内切圆与三条边的切点分别为D、E、F, 连接OD、OE、OF, ∴OD⊥AB,OE⊥BC,OF⊥AC, ∵∠C=90°, ∴四边形EOFC是矩形, 根据切线长定理,得 CE=CF, ∴矩形EOFC是正方形, ∴CE=CF=r, ∴AF=AD=AC﹣FC=3﹣r, BE=BD=BC﹣CE=4﹣r, ∵AD+BD=AB, ∴3﹣r+4﹣r=5, 解得r=1. 则△ABC的内切圆半径r=1. 故答案为:1. 【点评】本题考查了三角形的内切圆与内心,解决本题的关键是掌握三角形的内切圆与内心. 11.(2分)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=,如:3⊕2==,那么12⊕4= . 【考点】2C:实数的运算.菁优网版权所有 【专题】23:新定义;69:应用意识. 【分析】先依据定义列出算式,然后再进行计算即可. 【解答】解:12⊕4==. 故答案为:. 【点评】本题主要考查的是算术平方根的性质,根据定义运算列出算式是解题的关键. 12.(4分)观察下列各式的规律: ①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1. 请按以上规律写出第4个算式 4×6﹣52=24﹣25=﹣1 . 用含有字母的式子表示第n个算式为 n(n+2)﹣(n+1)2=﹣1 . 【考点】1G:有理数的混合运算;32:列代数式;37:规律型:数字的变化类.菁优网版权所有 【专题】2A:规律型;67:推理能力. 【分析】按照前3个算式的规律写出即可; 观察发现,和算式序号相等的数与比序号大2的数的积减去比序号大1的数的平方,等于﹣1,根据此规律写出即可. 【解答】解:④4×6﹣52=24﹣25=﹣1. 第n个算式为:n(n+2)﹣(n+1)2=﹣1. 故答案为:4×6﹣52=24﹣25=﹣1;n(n+2)﹣(n+1)2=﹣1. 【点评】此题主要考查了数字变化规律,观察出算式中的数字与算式的序号之间的关系是解题的关键. 二、单项选择题(本大题共8小题,每小题3分,共24分.请将正确选项的序号填入下面相应题号的表格内). 13.(3分)下面是某同学在一次测试中的计算: ①3m2n﹣5mn2=﹣2mn; ②2a3b•(﹣2a2b)=﹣4a6b; ③(a3)2=a5; ④(﹣a3)÷(﹣a)=a2. 其中运算正确的个数为( ) A.4个 B.3个 C.2个 D.1个 【考点】35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法;49:单项式乘单项式.菁优网版权所有 【专题】512:整式;66:运算能力. 【分析】根据合并同类项法则、单项式乘单项式的运算法则、幂的乘方法则、同底数幂的除法法则计算,判断即可. 【解答】解:①3m2n与5mn2不是同类项,不能合并,计算错误; ②2a3b•(﹣2a2b)=﹣4a5b,计算错误; ③(a3)2=a3×2=a6,计算错误; ④(﹣a3)÷(﹣a)=(﹣a)3﹣1=a2,计算正确; 故选:D. 【点评】本题考查的是单项式乘单项式、合并同类项、幂的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键. 14.(3分)等腰三角形的一个内角为70°,则另外两个内角的度数分别是( ) A.55°,55° B.70°,40°或70°,55° C.70°,40° D.55°,55°或70°,40° 【考点】KH:等腰三角形的性质.菁优网版权所有 【专题】554:等腰三角形与直角三角形;66:运算能力. 【分析】已知给出了一个内角是70°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还需用三角形内角和定理去验证每种情况是不是都成立. 【解答】解:分情况讨论: (1)若等腰三角形的顶角为70°时,底角=(180°﹣70°)÷2=55°; (2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°. 故选:D. 【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 15.(3分)如图,根据图中的信息,可得正确的方程是( ) A.π×()2x=π×()2×(x﹣5) B.π×()2x=π×()2×(x+5) C.π×82x=π×62×(x+5) D.π×82x=π×62×5 【考点】89:由实际问题抽象出一元一次方程.菁优网版权所有 【专题】521:一次方程(组)及应用;67:推理能力. 【分析】根据圆柱体的体积计算公式结合水的体积不变,即可得出关于x的一元一次方程,此题得解. 【解答】解:依题意,得:π×()2x=π×()2×(x+5). 故选:B. 【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 16.(3分)剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( ) A. B. C. D. 【考点】P9:剪纸问题.菁优网版权所有 【专题】558:平移、旋转与对称;64:几何直观. 【分析】对于此类问题,只要依据翻折变换,将图(4)中的纸片按顺序打开铺平,即可得到一个图案. 【解答】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得: . 故选:A. 【点评】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案. 17.(3分)在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有( ) A.4个 B.8个 C.12个 D.17个 【考点】U2:简单组合体的三视图;U3:由三视图判断几何体.菁优网版权所有 【专题】558:平移、旋转与对称;64:几何直观. 【分析】从俯视图中可以看出最底层碟子的个数及形状,从主视图可以看出每一层碟子的层数和个数,从而算出总的个数. 【解答】解:易得三摞碟子数从左往右分别为5,4,3, 则这个桌子上共有5+4+3=12个碟子. 故选:C. 【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出碟子的个数. 18.(3分)若ab<0,则正比例函数y=ax与反比例函数y=在同一平面直角坐标系中的大致图象可能是( ) A. B. C. D. 【考点】F4:正比例函数的图象;G2:反比例函数的图象.菁优网版权所有 【专题】533:一次函数及其应用;534:反比例函数及其应用;64:几何直观. 【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案. 【解答】解:∵ab<0, ∴分两种情况: (1)当a>0,b<0时,正比例函数y=ax的图象过原点、第一、三象限,反比例函数y=图象在第二、四象限,无选项符合. (2)当a<0,b>0时,正比例函数y=ax的图象过原点、第二、四象限,反比例函数y=图象在第一、三象限,故B选项正确; 故选:B. 【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题. 19.(3分)如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是( ) A.3.6 B.1.8 C.3 D.6 【考点】MP:圆锥的计算.菁优网版权所有 【专题】55C:与圆有关的计算;63:空间观念. 【分析】设这个圆锥的底面半径为r,利用弧长公式得到2πr=,然后解关于r的方程即可. 【解答】解:设这个圆锥的底面半径为r, 根据题意得2πr=, 解得r=3.6, 即这个圆锥的底面半径是3.6. 故选:A. 【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 20.(3分)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( ) A. B. C. D. 【考点】E6:函数的图象.菁优网版权所有 【专题】532:函数及其图像;68:模型思想. 【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象. 【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化. 故选:B. 【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 三、(本大题共3小题,第21题5分,第22题5分,第23题8分,共18分). 21.(5分)计算:()﹣1+|1﹣tan45°|+(π﹣3.14)0﹣. 【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.菁优网版权所有 【专题】511:实数;66:运算能力. 【分析】利用负整数指数幂,零指数幂,特殊角的三角函数,开立方的运算法则运算即可. 【解答】解:原式=3+|1﹣|+1﹣3 =3+ =. 【点评】本题主要考查了负整数指数幂,零指数幂,特殊角的三角函数,开立方的运算法则,熟练掌握运算法则是解答此题的关键. 22.(5分)化简求值:(﹣)÷;其中a2﹣a﹣1=0. 【考点】6D:分式的化简求值.菁优网版权所有 【专题】513:分式;66:运算能力. 【分析】先把括号内通分和除法运算化为乘法运算,再把分子分母因式分解后约分得到原式=,然后把a2=a+1代入计算即可. 【解答】解:原式=• =• =, ∵a2﹣a﹣1=0. ∴a2=a+1, ∴原式==1. 【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式. 23.(8分)如图,在Rt△ABC中,∠C=90°. (1)尺规作图:作Rt△ABC的外接圆⊙O;作∠ACB的角平分线交⊙O于点D,连接AD.(不写作法,保留作图痕迹) (2)若AC=6,BC=8,求AD的长. 【考点】KF:角平分线的性质;KQ:勾股定理;MA:三角形的外接圆与外心;N3:作图—复杂作图.菁优网版权所有 【专题】13:作图题;55G:尺规作图;64:几何直观. 【分析】(1)作AB的垂直平分线,即可作Rt△ABC的外接圆⊙O;再作∠ACB的角平分线交⊙O于点D,连接AD即可; (2)根据AC=6,BC=8可得AB=10,再根据CD是∠ACB的平分线即可求AD的长. 【解答】解:(1)如图,Rt△ABC的外接圆⊙O即为所求; (2)连接BD, ∵∠C=90°. ∴AB是⊙O的直径, ∴∠BDA=90°, ∵CD平分∠ACB, ∴∠ACD=∠BCD=45°, ∴∠DBA=∠ACD=45°, ∵AC=6,BC=8, ∴AB===10, ∴AD=BD=AB•sin45°=10×=5. 答:AD的长为5. 【点评】本题考查了作图﹣复杂作图、角平分线的性质、三角形的外接圆与外心, 四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分). 24.(9分)某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A测得发射塔顶端P点的仰角是45°,向前走60米到达B点测得P点的仰角是60°,测得发射塔底部Q点的仰角是30°.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1米,≈1.732) 【考点】TA:解直角三角形的应用﹣仰角俯角问题.菁优网版权所有 【专题】55E:解直角三角形及其应用;69:应用意识. 【分析】延长PQ交直线AB于点C,设PC=x米,在直角△APC和直角△BPC中,根据三角函数利用x表示出AC和BC,根据AB=AC﹣BC即可列出方程求得x的值,再在直角△BQC中利用三角函数求得QC的长,则PQ的长度即可求解. 【解答】解:延长PQ交直线AB于点C,设PC=x米. 在直角△APC中,∠A=45°, 则AC=PC=x米; ∵∠PBC=60° ∴∠BPC=30° 在直角△BPC中,BC=PC=x米, ∵AB=AC﹣BC=60米, 则x﹣x=60, 解得:x=90+30, 则BC=(30+30)米. 在Rt△BCQ中,QC=BC=(30+30)=(30+10)米. ∴PQ=PC﹣QC=90+30﹣(30+10)=60+20≈94.6(米). 答:信号发射塔PQ的高度约是94.6米. 【点评】本题考查了解直角三角形的应用﹣仰角俯角的问题,仰角的定义,以及三角函数,正确求得PC的长度是关键. 25.(8分)如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD∥OC交⊙O于点D,连接CD. (1)求证:CD是⊙O的切线. (2)若AD=4,直径AB=12,求线段BC的长. 【考点】ME:切线的判定与性质.菁优网版权所有 【专题】559:圆的有关概念及性质;67:推理能力. 【分析】(1)连接OD,要证明CD为圆O的切线,只要证明∠CDO=90°即可; (2)连接BD,根据已知求得△ADB∽△OBC再根据相似比即可求得BC的值. 【解答】(1)证明:连接OD,如图所示: ∵OA=OD, ∴∠ODA=∠OAD. ∵AD∥CO, ∴∠COD=∠ODA,∠COB=∠OAD. ∴∠COD=∠COB. ∵OD=OB,OC=OC, ∴△ODC≌△OBC(SAS). ∴∠ODC=∠OBC. ∵CB是圆O的切线且OB为半径, ∴∠CBO=90°. ∴∠CDO=90°. ∴OD⊥CD. 又∵CD经过半径OD的外端点D, ∴CD为圆O的切线. (2)解:连接BD, ∵AB是直径, ∴∠ADB=90°. 在直角△ADB中,BD===8, ∵∠ADB=∠OBC=90°,且∠COB=∠BAD, ∴△ADB∽△OBC. ∴=,即=. ∴BC=12. 【点评】本题主要考查了切线的判定和性质,常见的辅助线有: ①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”; ②有切线时,常常“遇到切点连圆心得半径”. 26.(9分)每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题: (1)该校八年级共有 500 名学生,“优秀”所占圆心角的度数为 108° . (2)请将图1中的条形统计图补充完整. (3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格? (4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率. 【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法.菁优网版权所有 【专题】542:统计的应用;543:概率及其应用;67:推理能力. 【分析】(1)由“良好”的人数和其所占的百分比即可求出总人数;由360°乘以“优秀”所占的比例即可得出“优秀”所占圆心角的度数; (2)求出“一般”的人数,补全条形统计图即可; (3)由15000乘以“不合格”所占的比例即可; (4)画树状图得出所有等可能的情况数,找出必有甲同学参加的情况数,即可求出所求的概率. 【解答】解:(1)该校八年级共有学生人数为200÷40%=500(名);“优秀”所占圆心角的度数为360°×=108°; 故答案为:500,108°; (2)“一般”的人数为500﹣150﹣200﹣50=100(名),补全条形统计图如图1: (3)15000×=1500(名), 即估计该市大约有1500名学生在这次答题中成绩不合格; (4)画树状图为: 共有12种等可能的结果数,其中必有甲同学参加的结果数为6种, ∴必有甲同学参加的概率为=. 【点评】本题考查了列表法与树状图法、条形统计图和扇形统计图以及概率公式;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率. 五、(本大题共两小题,第27题10分,第28题12分,共22分) 27.(10分)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G. 特例感知: (1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明. 猜想论证: (2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想. 联系拓展:- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 年青 中考 数学试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文