2013年天津高考文科数学试题及答案(Word版).doc
《2013年天津高考文科数学试题及答案(Word版).doc》由会员分享,可在线阅读,更多相关《2013年天津高考文科数学试题及答案(Word版).doc(10页珍藏版)》请在咨信网上搜索。
2013年普通高等学校招生全国统一考试(天津卷) 文 科 数 学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页. 第Ⅰ卷 参考公式: 如果事件A, B互斥, 那么 ·棱柱的体积公式V = Sh, 其中S表示棱柱的底面面积, h表示棱柱的高. ·如果事件A, B相互独立, 那么 ·球的体积公式 其中R表示球的半径. 一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x∈R| |x|≤2}, B = {x∈R| x≤1}, 则 (A) (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x, y满足约束条件则目标函数z = y-2x的最小值为 (A) -7 (B) -4 (C) 1 (D) 2 (3) 阅读右边的程序框图, 运行相应的程序, 则输出n的值为 (A) 7 (B) 6 (C) 5 (D) 4 (4) 设, 则 “”是“”的 (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 (5) 已知过点P(2,2) 的直线与圆相切, 且与直线垂直, 则 (A) (B) 1 (C) 2 (D) (6) 函数在区间上的最小值是 (A) (B) (C) (D) 0 (7) 已知函数是定义在R上的偶函数, 且在区间上单调递增. 若实数a满足, 则a的取值范围是 (A) (B) (C) (D) (8) 设函数. 若实数a, b满足, 则 (A) (B) (C) (D) 2013年普通高等学校招生全国统一考试(天津卷) 文 科 数 学 第Ⅱ卷 注意事项: 1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2. 本卷共12小题, 共110分. 二.填空题: 本大题共6小题, 每小题5分, 共30分. (9) i是虚数单位. 复数(3 + i)(1-2i) = . (10) 已知一个正方体的所有顶点在一个球面上. 若球的体积为, 则正方体的棱长为 . (11) 已知抛物线的准线过双曲线的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为 . (12) 在平行四边形ABCD中, AD = 1, , E为CD的中点. 若, 则AB的长为 . (13) 如图, 在圆内接梯形ABCD中, AB//DC, 过点A作圆的切线与CB的延长线交于点E. 若AB = AD = 5, BE = 4, 则弦BD的长为 . (14) 设a + b = 2, b>0, 则的最小值为 . 三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分) 某产品的三个质量指标分别为x, y, z, 用综合指标S = x + y + z评价该产品的等级. 若S≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下: 产品编号 A1 A2 A3 A4 A5 质量指标(x, y, z) (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1) 产品编号 A6 A7 A8 A9 A10 质量指标(x, y, z) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2) (Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率; (Ⅱ) 在该样品的一等品中, 随机抽取2件产品, (⒈) 用产品编号列出所有可能的结果; (⒉) 设事件B为 “在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率. (16) (本小题满分13分) 在△ABC中, 内角A, B, C所对的边分别是a, b, c. 已知, a = 3, . (Ⅰ) 求b的值; (Ⅱ) 求的值. (17) (本小题满分13分) 如图, 三棱柱ABC-A1B1C1中, 侧棱A1A⊥底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点. (Ⅰ) 证明EF//平面A1CD; (Ⅱ) 证明平面A1CD⊥平面A1ABB1; (Ⅲ) 求直线BC与平面A1CD所成角的正弦值. (18) (本小题满分13分) 设椭圆的左焦点为F, 离心率为, 过点F且与x轴垂直的直线被椭圆截得的线段长为. (Ⅰ) 求椭圆的方程; (Ⅱ) 设A, B分别为椭圆的左,右顶点, 过点F且斜率为k的直线与椭圆交于C, D两点. 若, 求k的值. (19) (本小题满分14分) 已知首项为的等比数列的前n项和为, 且成等差数列. (Ⅰ) 求数列的通项公式; (Ⅱ) 证明. (20) (本小题满分14分) 设, 已知函数 (Ⅰ) 证明在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增; (Ⅱ) 设曲线在点处的切线相互平行, 且 证明. 2013年普通高等学校招生全国统一考试(天津卷) 数学(文史类)参考答案 一、选择题:本题考查基本知识和基础运算。每小题5分。满分40分。 (1)D (2)A (3)D (4)A (5)C (6)B (7)C (8)A 二、填空题:本题考查基本知识和基本运算。每小题5分,满分30分。 (9)5-5i (10) (11) (12) (13) (14) 三、解答题 (15)本小题主要考查样本估计总体的方法、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基础知识。考查数据处理能力和运用概率知识解决简单问题的能力。满分13分。 (I)解:计算10件产品的综合指标S,如下表: 产品编号 4 4 6 3 4 5 4 5 3 5 其中S≤4的有,,,,,,共6件,故该样本的一等品率为=0.6, 从而可估计该批产品的一等品率为0.6. (II) (i)解:在该样本的一等品中,随机抽取2件产品的所有可能结果为,,,,, ,,,,,,,,,,共15种. (ii)解:在该样本的一等品中,综合指标S等于4的产品编号分别为,, ,,则事件B发生的所有可能结果为,,,,,共6种。 所以P(B)= . (16)本小题主要考查同角三角函数的基本关系、二倍角的正弦与余弦公式 、两角差的正弦公式以及正弦定理、余弦定理等基础知识.考查基本运算求解能力.满分13分。 (I)解:在中,由=,可得,又由,可得a=3c,又a=3,故c=1. 由,=,可得 (II)解:由=,得=,进而得==,. 所以sin=sin (17)本小题主要考查直线与平面平行、平面与平面垂直、直线与平面所成的角等基础知识。考查空间想象能力、运算求解能力和推理论证能力。满分13分。 (I)证明:如图,在三棱柱中, ∥,且=,连接ED,在中,因为D,E分别为AB, BC的中点,所以DE=且DE∥AC,又因为F为的中点,可得,且∥,即四边形为平行四边形,所以∥ 又平面,平面,所以,∥平面。 (II)证明:由于底面是正三角形,D为AB的中点,故CD⊥AB,又由于侧棱⊥底面,CD平面,所以⊥CD,又,因此CD⊥平面,而CD平面,所以平面⊥。 (III)解:在平面内,过点B作BG⊥交直线于点G,连接CG. 由于平面⊥平面,而直线是平面与平面的交线,故BG⊥平面。由此得为直线BC与平面所成的角。 设棱长为a,可得,由∽,易得BG。在Rt中,sin. 所以直线BC与平面所成角的正弦值为。 (18)本小题主要考查椭圆的标准方程和几何性质、直线的方程、向量的运算等基础知识。考查用代数方法研究圆锥曲线的性质。考查运算求解能力,以及用方程思想解决问题的能力。满分13分。 (I)解:设F(),由知. 过点F且与轴垂直的直线为,代入椭圆方程有,解得,于是,解得,又,从而,c=1,所以椭圆的方程为. (II)解:设点,,由F(-1,0)得直线CD的方程为,由方程组消去,整理得. 求解可得,. 因为A(),,所以=()+ == =. 由已知得=8,解得 (19)本小题主要考查等差数列的概念,等比数列的概念、通项公式、前n项和公式,数列的基本性质等基础知识. 考查分类讨论的思想,考查运算能力、分析问题和解决问题的能力. 满分14分. (I)解:设等比数列的公比为q,因为, , 成等差数列,所以+=,即=,可得2,于是. 又,所以等比数列的通项公式为. (II)证明: = 当n为奇数时,随的增大而减小,所以≤ 当n为偶数时,随的增大而减小,所以≤ 故对于≤ (20)本小题主要考查导数的运算及其几何意义,利用导数研究函数的单调性,考查分类讨论思想、化归思想、函数思想. 考查综合分析问题和解决问题的能力. 满分14分。 (I)证明:设函数, ① =由,从而当<<0时,= <3,所以函数在区间内单调递减. ② =,由于,所以当0<<1时,<0;当>1时,>0. 即函数在区间内单调递减,在区间内单调递增. 综合①,②及,可知函数在区间(-1,1)内单调递减,在区间内单调递增. (II)证明:由(I)知在区间内单调递减,在区间内单调递减,在区间内单调递增. 因为曲线在点(i=1,2,3)处的切线相互平行,从而互不相等,且. 不防设<0<<,由, 可得,解得,从而0<<<. 设,则<<. 由<,解得<<0,所以++>,设,则,因为,所以,故++>, 即++>.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 天津 高考 文科 数学试题 答案 Word
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文