人教版八年级下册数学乐山数学期末试卷综合测试(Word版含答案).doc
《人教版八年级下册数学乐山数学期末试卷综合测试(Word版含答案).doc》由会员分享,可在线阅读,更多相关《人教版八年级下册数学乐山数学期末试卷综合测试(Word版含答案).doc(33页珍藏版)》请在咨信网上搜索。
人教版八年级下册数学乐山数学期末试卷综合测试(Word版含答案) 一、选择题 1.如果在实数范围内有意义,则x的取值范围是( ) A.x≠2 B.x≥﹣7 C.x≥2 D.x≥﹣7且x≠2 2.下列各组数中,能构成直角三角形的是( ) A.4,5,6 B.1,1, C.6,8,11 D.5,12,23 3.下列命题中,是真命题的是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是矩形 C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形 4.某校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班平均得分( ) A.9 B.6.67 C.9.1 D.6.74 5.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( ) A.42 B.32 C.42或32 D.37或33 6.如图,点为边上一点,将沿翻折得到,点在上,且.那么的度数为( ) A.38° B.48° C.51° D.62° 7.如图,数轴上点A对应的数是0,点B对应的数是1,,垂足为B,且,以A为圆心,为半径画弧,交数轴于点D,则点D表示的数为( ) A.2.2 B. C. D. 8.如图,在平面直角坐标系中,O为坐标原点,直线与x轴交于B点,与轴交于A点,点在线段 上,且,若点P在坐标轴上,则满足的点P的个数是( ) A.4 B.3 C.2 D.1 二、填空题 9.若有意义,则的取值范围是____________. 10.如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为 _____. 11.等腰梯形的上底是10cm,下底是16cm,高是4cm,则等腰梯形的周长为______cm. 12.如图,在矩形中,,,将沿对角线翻折,点落在点处,交于点,则线段的长为____________. 13.某函数的图象经过(1,),且函数y的值随自变量x的值增大而增大.请你写出一个符合上述条件的函数关系式:__________. 14.如图,四边形对角线,交于点. ,,请你添加一个适当的条件 ______ ,使四边形是菱形(只填一种情况即可). 15.将正方形,,按如图所示方式放置,点,,,…和点,,,…分别在直线和轴上,则点的坐标是______,的纵坐标是______. 16.如图,平行四边形ABCD的对角线交于点O,∠ABC=120°,AB=6,BC=13,将BOC沿直线BD翻折得到BOF,BF交AD于点E,则=____________. 三、解答题 17.(1)计算:; (2)计算:. 18.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域. (1)A城是否受到这次沙尘暴的影响?为什么? (2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长? 19.阅读理解:我们给出如下定义:若一个四边形中存在一组相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边. (1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:__________,__________. (2)如图,已知格点(小正方形的顶点),,,请你画出以格点为顶点,,为勾股边且对角线相等的两个勾股四边形. 20.在矩形中,,,对角线、交于点,一直线过点分别交、于点、,且,求证:四边形为菱形. 21.观察下列等式: ①;②;③;…… 回答下列问题: (1)利用你观察到的规律,化简: (2)计算: +++……+ 22.某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示, (1)当时,单价y为______元;当单价y为8.8元时,购买量x(千克)的取值范围为______; (2)根据函数图象,当时,求出函数图象中单价y(元)与购买量x(千克)的函数关系式; (3)促销活动期间,张亮计划去该店购买A种水果10千克,那么张亮共需花费多少元? 23.在平行四边形中,以为腰向右作等腰,,以为斜边向左作,且三点,,在同一直线上. (1)如图①,若点与点重合,且,,求四边形的周长; (2)如图②,若点在边上,点为线段上一点,连接,点为上一点,连接,且,,求证:; (3)如图③,若,,,是中点,是上一点,在五边形内作等边,连接、,直接写出的最小值. 24.如图,在平面直角坐标系中,点的坐标为,点在轴正半轴上(),把线段绕点顺时针旋转得到线段,过点分别向轴,轴作垂线,垂足为,. (1)求四边形的面积; (2)若,求直线的表达式; (3)在(2)的条件下,点为延长线上一点,连接,作的平分线,交轴于点,若为等腰三角形,求点的坐标. 25.(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD的平分线,则线段AB,AD,DC之间的等量关系为 ; (2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论; (3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论. 26.综合与实践:如图1,在正方形中,连接对角线,点O是的中点,点E是线段上任意一点(不与点A,O重合),连接,.过点E作交直线于点F. (1)试猜想线段与的数量关系,并说明理由; (2)试猜想线段之间的数量关系,并说明理由; (3)如图2,当E在线段上时(不与点C,O重合),交延长线于点F,保持其余条件不变,直接写出线段之间的数量关系. 【参考答案】 一、选择题 1.D 解析:D 【分析】 由已知可得x﹣2≠0,x+7≥0,求出x的范围即可. 【详解】 解:∵在实数范围内有意义, ∴x﹣2≠0,x+7≥0, ∴x≠2,x≥﹣7, ∴x≥﹣7且x≠2, 故选:D. 【点睛】 此题主要考查二次根式与分式有意义的条件,解题的关键是熟知其各自的特点. 2.B 解析:B 【分析】 根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形. 【详解】 解:A、42+52≠62,不能构成直角三角形,故此选项不符合题意; B、12+12= ,能构成直角三角形,故此选项符合题意; C、62+82≠112,不能构成直角三角形,故此选项不符合题意; D、52+122≠232,不能构成直角三角形,故此选项不符合题意. 故选:B. 【点睛】 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 3.D 解析:D 【解析】 【分析】 根据矩形的判定方法对进行判断;根据正方形的判定方法对进行判断;根据平行四边形的判定方法对进行判断. 【详解】 解:、两条对角线相等的平行四边形是矩形,所以选项错误,不符合题意; 、两条对角线相等的平行四边形是矩形,所以选项错误,不符合题意; 、两条对角线互相垂直平分且相等的四边形是正方形,所以选项错误,不符合题意; 、两条对角线互相平分的四边形是平行四边形,所以选项正确,符合题意. 故选:D. 【点睛】 本题考查了命题与定理,解题的关键是掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 4.C 解析:C 【解析】 【分析】 根据加权平均数的定义列式计算即可. 【详解】 解:该班平均得分=9.1(分), 故选:C. 【点睛】 本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义. 5.C 解析:C 【分析】 存在2种情况,△ABC是锐角三角形和钝角三角形时,高AD分别在△ABC的内部和外部 【详解】 情况一:如下图,△ABC是锐角三角形 ∵AD是高,∴AD⊥BC ∵AB=15,AD=12 ∴在Rt△ABD中,BD=9 ∵AC=13,AD=12 ∴在Rt△ACD中,DC=5 ∴△ABC的周长为:15+12+9+5=42 情况二:如下图,△ABC是钝角三角形 在Rt△ADC中,AD=12,AC=13,∴DC=5 在Rt△ABD中,AD=12,AB=15,∴DB=9 ∴BC=4 ∴△ABC的周长为:15+13+4=32 故选:C 【点睛】 本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况. 6.C 解析:C 【解析】 【分析】 由平行四边形的性质和折叠的性质得出∠BFE=∠A=52°,∠FBE=∠ABE,由等腰三角形的性质和三角形的外角性质得出∠EDF=∠DEF=∠BFE=26°,由三角形内角和定理求出∠ABD=102°,即可得出∠ABE的度数. 【详解】 解:∵四边形ABCD是平行四边形, ∴∠A=∠C=52°, 由折叠的性质得:∠BFE=∠A=52°,∠FBE=∠ABE, ∵EF=DF, ∴∠EDF=∠DEF=∠BFE=26°, ∴∠ABD=180°-∠A-∠EDF=102°, ∴∠ABE=∠ABD=51°, 故选:C. 【点睛】 本题考查了平行四边形的性质、折叠的性质、等腰三角形的性质、三角形的外角性质、三角形内角和定理;熟练掌握平行四边形的性质和等腰三角形的性质是解决问题的关键. 7.D 解析:D 【解析】 【分析】 首先根据勾股定理求出的长,再根据同圆的半径相等可知=,再根据条件:点对应的数是原点,可求出点坐标. 【详解】 解:∵, ∴=, ∴, ∵以为圆心,为半径画弧,交数轴于点, ∴, ∴点表示的数是:. 故选D. 【点睛】 此题考查实数与数轴,勾股定理,解题关键是利用勾股定理求出. 8.A 解析:A 【分析】 作点关于轴的对称点,根据直线与x轴交于B点,与轴交于A点,求出A,B两点的坐标,然后利用勾股定理求得,即,可判断点P在x轴上,使得的点P的个数是两个;作点关于轴的对称点,同理可判断点P在y轴上,使得的点P的个数是两个,据此求解即可. 【详解】 解:如图示,作点关于轴的对称点, 直线与x轴交于B点,与轴交于A点, 则当时,,即A点坐标是:(0,), 当时,,即B点坐标是:(,0), ∴, ∴, ∵, ∴,, 由勾股定理可得:,, ∴, ∴C点坐标是:(,),D点坐标是:(, ), 则点坐标是:(,), ∴, ∴, 即:, ∴如下图示, 点P在y轴上,使得的点P的个数是两个, 如图示,作点关于轴的对称点, 同理可以求得, 即:, ∴点P在y轴上,使得的点P的个数是两个, 综上所述,点P在坐标轴上,满足的点P的个数是4个, 故选:A. 【点睛】 本题考查了一次函数的应用、轴对称的性质、勾股定理的应用,熟悉相关性质是解题的关键. 二、填空题 9. 【解析】 【分析】 根据被开方数大于或等于0,列式计算即可得解. 【详解】 解:∵有意义, ∴2x-6≥0, 解得x≥3. 故答案为:x≥3. 【点睛】 本题考查二次根式有意义的条件.解题的关键是明确二次根式的被开方数是非负数. 10.A 解析:24 【解析】 【分析】 先求出AC,由菱形的面积公式可求解. 【详解】 解:∵BD=4,AC=3BD, ∴AC=12, ∴菱形ABCD的面积===24, 故答案为:24. 【点睛】 本题考查了菱形的性质,利用菱形的性质求解面积是解题的关键.对角线互相垂直的四边形的面积等于对角线积的一半. 11.A 解析:【解析】 【分析】 首先根据题意画出图形,过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了. 【详解】 解:过A,D作下底BC的垂线, 则BE=CF=(16-10)=3cm, 在直角△ABE中根据勾股定理得到: AB=CD==5, 所以等腰梯形的周长=10+16+5×2=36cm. 故答案为36. 【点睛】 本题考查等腰梯形的性质、勾股定理.注意掌握数形结合思想的应用. 12.D 解析: 【分析】 根据将沿对角线翻折,点落在点处,交于点,可得到∠DBE=∠BDE,在 中,利用勾股定理即可解答. 【详解】 ∵在矩形中,,, ∴AB=CD=3,AD=BC=6,AD//CB,∠BAD= , ∴∠EDB=∠DBC, ∵将沿对角线翻折,点落在点处,交于点, ∴∠EBD=∠DBC, ∴∠DBE=∠BDE, ∴BE=DE, 设DE=x,则BE=x,AE=6-x, 在 中, , ∴ ,解得: 故答案为: 【点睛】 本题主要考查了矩形的折叠问题,解题的关键是灵活运用矩形的折叠结合勾股定理解答问题. 13. 【分析】 首先运用待定系数法确定k,b应满足的一个确定的关系式,再根据条件确定k的值,进一步确定b的值,即可写出函数关系式. 【详解】 解:设此函数关系式是y=kx+b,把代入,得:,即.又函数y的值随自变量x的值增大而增大,则. 不妨取,则,即, 故答案是:.(答案不唯一) 【点睛】 本题考查一次函数的性质,解题的关键是根据一次函数的性质灵活应用. 14.(答案不唯一) 【分析】 由条件,,根据对角线互相垂直平分的四边形是菱形进行判定即可. 【详解】 解:添加即可判断四边形是菱形, ∵,, 当时,四边形对角线,互相垂直平分, ∴四边形是菱形, 故答案为:(答案不唯一). 【点睛】 此题主要考查了菱形的判定,掌握一组对角线互相垂直平分的四边形是菱形是解题的关键. 15.【分析】 先根据解析式求得的坐标,再根据正方形的性质求得的坐标,以相同的方法求得;,继而得到坐标的规律,据此求得的纵坐标 【详解】 当时, 四边形是正方形 当时, 四边形是 解析: 【分析】 先根据解析式求得的坐标,再根据正方形的性质求得的坐标,以相同的方法求得;,继而得到坐标的规律,据此求得的纵坐标 【详解】 当时, 四边形是正方形 当时, 四边形是正方形 , 同理可得:; …… 点的坐标为 , 故答案为:①② 【点睛】 本题考查了一次函数的性质,正方形性质,找到点坐标的规律是解题的关键. 16.【分析】 由折叠的性质可知,∠CBO=∠OBE,再由平行四边形的性质,可得BE=ED,过点B作BG⊥AD于点G,在Rt△ABG中,∠ABG=30°,求出AG=3,BG=,设ED=x,则BE=x,G 解析: 【分析】 由折叠的性质可知,∠CBO=∠OBE,再由平行四边形的性质,可得BE=ED,过点B作BG⊥AD于点G,在Rt△ABG中,∠ABG=30°,求出AG=3,BG=,设ED=x,则BE=x,GE=10﹣x,在Rt△BEG中,由勾股定理得x2=+(10﹣x)2,解得x=,可求S△BED=×DE×BG=. 【详解】 解:由折叠的性质可知,∠CBO=∠OBE, ∵平行四边形ABCD, ∴BC∥AD, ∴∠BEA=∠CBE=2∠OBE, ∵∠BEA=∠OBE+∠BDE, ∴∠OBE=∠ODE, ∴BE=ED, 过点B作BG⊥AD于点G, ∵∠ABC=120°, ∴∠BAD=60°, ∵AB=6, 在Rt△ABG中,∠ABG=30°, ∴AG=3,BG=, 设ED=x,则BE=x, ∵BC=13, ∴GE=10﹣x, 在Rt△BEG中,BE2=BG2+GE2, ∴ 解得x=, ∴S△BED=×DE×BG=, 故答案为:. 【点睛】 本题主要考查了平行四边形的性质,勾股定理,含30度角的直角三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解. 三、解答题 17.(1)15;(2)6 【分析】 (1)先化简为最简二次根式,先计算括号里的,再计算二次根式乘法即可, (2)先利用平方差公式简算,和立方根,然后再算加减法即可. 【详解】 解:(1), , , ; 解析:(1)15;(2)6 【分析】 (1)先化简为最简二次根式,先计算括号里的,再计算二次根式乘法即可, (2)先利用平方差公式简算,和立方根,然后再算加减法即可. 【详解】 解:(1), , , ; (2), =, , =. 【点睛】 本题考查二次根式混合运算,最简二次根式,平方差公式,同类二次根式,掌握二次根式混合运算法则,最简二次根式,平方差公式巧用,同类二次根式及合并法则是解题关键. 18.(1)受影响,理由见解析;(2)15小时 【分析】 (1)过点作AC⊥BM,垂足为C,在Rt△ABC中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km比较大小即可判断A城是否 解析:(1)受影响,理由见解析;(2)15小时 【分析】 (1)过点作AC⊥BM,垂足为C,在Rt△ABC中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km比较大小即可判断A城是否受到这次沙尘暴的影响; (2)如图,设点E、F是以A为圆心,150km为半径的圆与BM的交点,根据勾股定理可以求出CE的长度,也就求出了EF的长度,然后除以沙尘暴的速度即可求出遭受影响的时间. 【详解】 解:(1)过点A作AC⊥BM,垂足为C, 在Rt△ABC中,由题意可知∠CBA=30°, ∴AC=AB=×240=120, ∵AC=120<150, ∴A城将受这次沙尘暴的影响. (2)设点E,F是以A为圆心,150km为半径的圆与MB的交点,连接AE,AF, 由题意得,,CE=90 ∴EF=2CE=2×90=180 180÷12=15(小时) ∴A城受沙尘暴影响的时间为15小时. 【点睛】 本题考查了直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,正确理解题意,把握好题目的数量关系是解决问题的关键. 19.(1)矩形,正方形;(2)见解析 【解析】 【分析】 (1)根据勾股四边形的定义即可求解; (2)由勾股定理可知可知四边形对角线为5,据此即可作图. 【详解】 解:(1)由勾股四边形的定义矩形、正方 解析:(1)矩形,正方形;(2)见解析 【解析】 【分析】 (1)根据勾股四边形的定义即可求解; (2)由勾股定理可知可知四边形对角线为5,据此即可作图. 【详解】 解:(1)由勾股四边形的定义矩形、正方形都满足一组相邻两边的平方和等于一条对角线的平方, 故答案为:矩形,正方形; (2)如图, 证明:∵∠AOB=90°, ∴, ∴四边形为勾股四边形, 由勾股定理得, ∴AB=OM, ∴四边形都是勾股四边形,符合题意. 【点睛】 本题为新定义问题,考查了勾股定理等知识,矩形、正方形的性质,熟知勾股定理,理解勾股四边形的定义是解题关键. 20.见解析 【分析】 根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证. 【详解】 证明:∵矩形, ∴,, ∴, 在和中, , ∴, ∴, 又∵, ∴四边形为平行四边形 解析:见解析 【分析】 根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证. 【详解】 证明:∵矩形, ∴,, ∴, 在和中, , ∴, ∴, 又∵, ∴四边形为平行四边形, ∵矩形, ∴,, 又∵,,, ∴, , ∴, ∴四边形为菱形. 【点睛】 本题主要考查了矩形的性质,菱形的判定,勾股定理,熟练掌握矩形的性质定理,菱形的判定定理是解题的关键. 21.(1)- (2)9 【解析】 【分析】 (1)根据已知的3个等式发现规律:,把n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可. 【详解】 解:(1 解析:(1)- (2)9 【解析】 【分析】 (1)根据已知的3个等式发现规律:,把n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可. 【详解】 解:(1); (2)计算: = = =10-1 =9. 22.(1)10;;(2)函数图象的解析式:;(3)促销活动期间,去该店购买A种水果10千克,那么共需花费9元. 【分析】 (1)根据观察函数图象的横坐标,纵坐标,可得结果; (2)根据待定系数法,设函数 解析:(1)10;;(2)函数图象的解析式:;(3)促销活动期间,去该店购买A种水果10千克,那么共需花费9元. 【分析】 (1)根据观察函数图象的横坐标,纵坐标,可得结果; (2)根据待定系数法,设函数图象的解析式 (k是常数,b是常数,),将,两个点代入求解即可得函数的解析式; (3)将代入(2)函数解析式即可. 【详解】 解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元. 故答案为:10;; (2)设函数图象的解析式 (k是常数,b是常数,), 图象过点,, 可得:, 解得, 函数图象的解析式:; (3)当时, , 答:促销活动期间,去该店购买A种水果10千克,那么共需花费9元. 【点睛】 本题考查了一次函数的应用,待定系数法确定函数解析式等,理解题意,根据函数图象得出信息是解题关键. 23.(1);(2)证明见解析;(3). 【分析】 (1)由平行四边形的性质得到AD//BC,∠ABC=∠ADC= 60°,再根据F、D、A 三点共线得到∠ABC=∠FAB= 60°,再分别求出线段的BF 解析:(1);(2)证明见解析;(3). 【分析】 (1)由平行四边形的性质得到AD//BC,∠ABC=∠ADC= 60°,再根据F、D、A 三点共线得到∠ABC=∠FAB= 60°,再分别求出线段的BF、FD、BD长度即可; (2)连接QE,延长FP至点H,使得PH = FQ,由“SAS”可证△FAB≌△QAE,△FBP≌△QEH,可得EP= BP; (3)连接MC,以MC为边作等边三角形MEC,过点C作CP⊥AD于P,连接EH,并延长EH交CP于G,过点E作AD的垂线交BC于R,交AD 于Q,由“SAS”可证△M EH≌△MCN,可得 ∠MEH =∠MCN,可证EHBC,则点H在过点E平行BC的直线上运动,作点C关于EH 的对称点C´,连接BC´, 即的BC´长度为BH + CH的最小值,利用勾股定理列出方程组可求解. 【详解】 解:(1)如图①,在平行四边形ABCD中,∠ADC=60° ∴AD//BC,∠AВC= ∠ADC = 60 ° ∵ F、 D、A三点共线 ∴FD∥BC ∴ ∠ABC= ∠FAB = 60° ∵E、D重合,AB= AE,AD= 2 ∴AD= AE= AB= 2= BC= CD ∴∠ADB=30° 在Rt△FBD,∠AFB= 90°,∠ABF= 90°- 60° = 30° ∴AF= 1 ∴ ∴四边形CBFD的周长; (2)如图②,连接QE,延长FP至点H,使得 PH = FQ,连接EH,则PH + PQ= FQ+ PQ ∴FP= QH ∵∠AFB = 90° ∴∠2+∠3= 90° ∵∠2+ ∠1 = 90° ∴∠1 = ∠3 ∴AF= AQ 在平行四边形ABCD中,F、A、 D共线, ∴AB∥CD,∠C+ ∠D= 180 ° ∴∠5= ∠D ∵∠C+ ∠QAE = 180 ∴∠4= ∠D ∴∠4= ∠5 ∵ AB= AE ∴ △FAB≌△QAE(SAS) ∴∠AQE= ∠AFB= 90°,FB= QE ∴∠6+ ∠1 = 90°, ∠2= ∠6 ∴△FBP≌△QEH (SAS) ∴BP= ЕН,∠H = ∠7 ∴∠7= ∠8 ∴∠H= ∠8 ∴ЕН = ЕР ∴ EР = BP (3)如图③,连接MC,以MC为边作等边三角形MEC,过点C作CP⊥AD于P,连接EH,并延长EH交CP于G,过点E作AD的垂线交BC于R,交AD于Q ∵△M EC和△MNH是等边三角形, ∴ME= MC,MN = MH,∠EMC=∠HMN=60° ∴∠EMH =∠CMN ∴△MEH≌△MCN (SAS) ∴∠MEH =∠MCN ∵四边形ABCD是平行四边形,∠ABC= 60° ∴∠ADC=∠ABC=60°,∠BCD=120°,AD= BC= 8,AB= CD= 6,AD∥ BC ∴∠BCE+∠MCD=∠BCD-∠ECM = 120°- 60° = 60° ∵∠MЕН+∠CEH=∠MEC=60° ∴∠CEH = ∠ЕСВ ∴EН// BC ∴点H在过点E平行BC的直线上运动, 作点C关于EH的对称点C´,连接BC´,即BC´的长度为BH + CH的最小值 ∵∠ADC=60°,CD⊥AD ∴∠PCD= 30, ∴, ∵点M是AD的中点 ∴AM=MD=4 ∴MP= 1 ∴ ∴ ∵RQ⊥AD,CP⊥AD,AD∥BC,EG// BC ∴RQ⊥BC,PC⊥ AD,RQ⊥EG, PC⊥ EG ∴四边形CPQR是矩形,四边形ERCG是矩形 ∴ ,, 设, 在Rt△ERC中 在Rt△QEM中 ∴ 解得或(舍去) ∴解得 , ∴ ∵C关于EH的对称点是C´ ∴ ∴ ∴ ∴BH + CH的最小值为. 【点睛】 本题是四边形综合题,考查了平行四边形的性质,等腰三角形的性质,矩形的性质与判定,全等三角形的性质与判定,勾股定理等知识,确定H的运动轨迹是解题的关键. 24.(1);(2);(3)或或. 【解析】 【分析】 (1)连接,作,交的延长线于点,可知,,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解; (2)设,即可表示出、的长度,根据求 解析:(1);(2);(3)或或. 【解析】 【分析】 (1)连接,作,交的延长线于点,可知,,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解; (2)设,即可表示出、的长度,根据求出的值,即可得到点的坐标,再设直线的解析式为,将、两点的坐标代入即可; (3)设点坐标为,因为平分,所以,最后分三种情况进行讨论即可. 【详解】 (1)∵, ∴, 连接,作,交的延长线于点,如图, ∴, ∴, ∵, 即, 在中,, ∵ , ∴, 又∵, ∴, ∵, ∴, ∵, ∴, ∴, ∴, ∴, ∴; (2) 设, 由(1)可知,, ∵, ∴, ∵与都是直角三角形,且, ∴, ∴, ∴,, ∵, ∴, 解得, ∴, 又∵, 设直线的解析式为, 则,解得, ∴直线的解析式为; (3)设点坐标为, ∵平分, ∴, ①当时,则, ∴, ∴与重合, ∴; ②当时, 过点作,垂足为, 则,, 又∵,, ∴, ∴, ∴, 在中,由勾股定理可求得, ∴, 在中,, 在中,, ∴, ∴, 解得, ∴; ③当时,延长交轴于点, ∵,且 ∴, ∴, 过点作,垂足为, 则,, ∴, ∴, ∴, 在中,由勾股定理可求得, ∴, ∴, ∵, 设直线的解析式为, 则,解得, ∴直线解析式为, 当时,解得, ∴. 综上所述,当为等腰三角形时,点坐标为或或. 【点睛】 本题是四边形的综合题,考查了矩形的性质、三角形内角和定理、全等三角形的性质和判定、勾股定理、待定系数法求函数解析式等知识点,解题要注意分类讨论的思想. 25.(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析. 【分析】 (1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS) 解析:(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析. 【分析】 (1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS),即可推出AB=CF,再证明DA=DF,即可解决问题. (2)结论:AB=AF+CF,如图②,延长AE交DF的延长线于点G,证明方法类似(1). (3)结论;AB=DF+CF.如图③,延长AE交CF的延长线于点G,证明方法类似(1). 【详解】 解:(1)探究问题:结论:AD=AB+DC. 理由:如图①中,延长AE,DC交于点F, ∵AB∥CD, ∴∠BAF=∠F, 在△ABE和△FCE中, CE=BE,∠BAF=∠F,∠AEB=∠FEC, ∴△ABE≌△FEC(AAS), ∴CF=AB, ∵AE是∠BAD的平分线, ∴∠BAF=∠FAD, ∴∠FAD=∠F, ∴AD=DF, ∵DC+CF=DF, ∴DC+AB=AD. 故答案为AD=AB+DC. (2)方法迁移:结论:AB=AF+CF. 证明:如图②,延长AE交DF的延长线于点G, ∵E是BC的中点, ∴CE=BE, ∵AB∥DC, ∴∠BAE=∠G.且BE=CE,∠AEB=∠GEC ∴△AEB≌△GEC(AAS) ∴AB=GC ∵AE是∠BAF的平分线 ∴∠BAG=∠FAG, ∵∠BAG∠G, ∴∠FAG=∠G, ∴FA=FG, ∵CG=CF+FG, ∴AB=AF+CF. (3)联想拓展:结论;AB=DF+CF. 证明:如图③,延长AE交CF的延长线于点G, ∵E是BC的中点, ∴CE=BE, ∵AB∥CF, ∴∠BAE=∠G, 在△AEB和△GEC中, , ∴△AEB≌△GEC, ∴AB=GC, ∵∠EDF=∠BAE, ∴∠FDG=∠G, ∴FD=FG, ∴AB=DF+CF. 【点睛】 本题是四边形的综合问题,考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质、三角形三边关系等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 26.(1),理由见解析;(2),理由见解析;(3),理由见解析 【分析】 (1)先根据正方形的性质可证得,由此可得,,再根据同角的补角相等证得,等量代换可得,由此可得,再等量代换即可得证; (2)过点E 解析:(1),理由见解析;(2),理由见解析;(3),理由见解析 【分析】 (1)先根据正方形的性质可证得,由此可得,,再根据同角的补角相等证得,等量代换可得,由此可得,再等量代换即可得证; (2)过点E作交CB的延长线于点G,先证明,利用勾股定理可得,再证明,由此可得,最后再等量代换即可得证; (3)仿照(1)和(2)的证明即可证得. 【详解】 解:(1),理由如下: ∵四边形是正方形, ∴,, ∴, ∴, ∴, 在与中, ∴, ∴,, ∵, ∴, ∵, ∴, ∵, ∴, ∴, ∴, ∴; (2),理由如下: 如图,过点E作交CB的延长线于点G, ∴, 由(1)知:, ∴, ∴, ∴在中,, 在与中, ∴, ∴, 又∵, ∴; (3),理由如下: 如图,过点E作交BC于点G,设CD与EF的交点为点P, ∴, 由(1)可知:, ∴, ∴, ∴在中,, ∵, ∴, ∴, ∵, ∴, 又∵, ∴, 由(1)可知:, ∴, 在与中, ∴, ∴, 又∵, ∴. 【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的判定与性质以及勾股定理的应用,作出正确的辅助线并能灵活运用相关图形的性质是解决本题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版八 年级 下册 数学 乐山 期末试卷 综合测试 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文