苏教七年级下册期末解答题压轴数学真题模拟题目答案.doc
《苏教七年级下册期末解答题压轴数学真题模拟题目答案.doc》由会员分享,可在线阅读,更多相关《苏教七年级下册期末解答题压轴数学真题模拟题目答案.doc(20页珍藏版)》请在咨信网上搜索。
苏教七年级下册期末解答题压轴数学真题模拟题目答案 一、解答题 1.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________ (2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么? (3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数. 2.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F. (1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: . (2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) . ① 求∠B的度数; ②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由. 3.解读基础: (1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由; (2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由: 应用乐园:直接运用上述两个结论解答下列各题 (3)①如图3,在中,、分别平分和,请直接写出和的关系 ; ②如图4, . (4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数. 4.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α. (1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °; (2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为: ; (3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由. (4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为: . 5.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F. (1)若点E的位置如图1所示. ①若∠ABE=60°,∠CDE=80°,则∠F= °; ②探究∠F与∠BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 . (3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 . 6.已知:如图1直线、被直线所截,. (1)求证:; (2)如图2,点E在,之间的直线上,P、Q分别在直线、上,连接、,平分,平分,则和之间有什么数量关系,请直接写出你的结论; (3)如图3,在(2)的条件下,过P点作交于点H,连接,若平分,,求的度数. 7.我们将内角互为对顶角的两个三角形称为“对顶三角形.例如,在图1中,的内角与的内角互为对顶角,则与为对顶三角形,根据三角形内角和定理知“对顶三角形”有如下性质:. (1)(性质理解) 如图2,在“对顶三角形”与中,,,求证:; (2)(性质应用) 如图3,在中,点D、E分别是边、上的点,,若比大20°,求的度数; (3)(拓展提高) 如图4,已知,是的角平分线,且和的平分线和相交于点P,设,求的度数(用表示). 8.(概念认识)如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”. (问题解决) (1)如图②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分线BD交AC于点D,求∠BDC的度数; (2)如图③,在△ABC中,BP、CP分别是∠ABC邻BC三分线和∠ACB邻BC三分线,且∠BPC=140°,求∠A的度数; (延伸推广) (3)在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°(),∠B=54°,直接写出∠BPC的度数.(用含m的代数式表示) 9.直线与直线垂直相交于O,点A在射线上运动,点B在射线上运动. (1)如图1,已知、分别是和角的平分线,点A、B在运动的过程中,的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值; (2)如图2,延长至D,己知、的角平分线与的角平分线及其延长线相交于E、F. ①求的度数. ②在中,如果有一个角是另一个角的3倍,试求的度数. 10.已如在四边形中,. (1)如图1,若,则________. (2)如图2,若、分别平分、,判断与位置关系并证明理由. (3)如图3,若、分别五等分、(即,),则_______. 【参考答案】 一、解答题 1.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=. 【分析】 (1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°, 解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=. 【分析】 (1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可; (2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可; (3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可. 【详解】 解:当108°的角是另一个内角的3倍时, 最小角为180°﹣108°﹣108÷3°=36°, 当180°﹣108°=72°的角是另一个内角的3倍时, 最小角为72°÷(1+3)=18°, 因此,这个“梦想三角形”的最小内角的度数为36°或18°. 故答案为:18°或36°. (2)△AOB、△AOC都是“梦想三角形” 证明:∵AB⊥OM, ∴∠OAB=90°, ∴∠ABO=90°﹣∠MON=30°, ∴∠OAB=3∠ABO, ∴△AOB为“梦想三角形”, ∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON, ∴∠OAC=80°﹣60°=20°, ∴∠AOB=3∠OAC, ∴△AOC是“梦想三角形”. (3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°, ∴∠EFC=∠ADC, ∴AD∥EF, ∴∠DEF=∠ADE, ∵∠DEF=∠B, ∴∠B=∠ADE, ∴DE∥BC, ∴∠CDE=∠BCD, ∵AE平分∠ADC, ∴∠ADE=∠CDE, ∴∠B=∠BCD, ∵△BCD是“梦想三角形”, ∴∠BDC=3∠B,或∠B=3∠BDC, ∵∠BDC+∠BCD+∠B=180°, ∴∠B=36°或∠B=. 【点睛】 本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键. 2.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得, 解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数. ②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可. 【详解】 (1)由翻折的性质可得:∠E=∠B, ∵∠BAC=90°,AE⊥BC, ∴∠DFE=90°, ∴180°-∠BAC=180°-∠DFE=90°, 即:∠B+∠C=∠E+∠FDE=90°, ∴∠C=∠FDE, ∴AC∥DE, ∴∠CAF=∠E, ∴∠CAF=∠E=∠B 故与∠B相等的角有∠CAF和∠E; ∵∠BAC=90°,AE⊥BC, ∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90° ∴∠BAF+∠CAF=∠CAF+∠C=90° ∴∠BAF=∠C 又AC∥DE, ∴∠C=∠CDE, ∴故与∠C相等的角有∠CDE、∠BAF; (2)①∵ ∴ 又∵, ∴∠C=70°,∠B=20°; ②∵∠BAD=x°, ∠B=20°则,, 由翻折可知:∵, , ∴, , 当∠FDE=∠DFE时,, 解得:; 当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去); 当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去); 综上所述,存在这样的x的值,使得△DEF中有两个角相等.且. 【点睛】 本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识. 3.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结 解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE,由(2)的结论及四边形内角和为360°即可得出结论; (4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】 (1).理由如下: 如图1,,,,; (2).理由如下: 在中,,在中,,,; (3)①,,、分别平分和,,. 故答案为:. ②连结. ∵,. 故答案为:; (4)由(1)知,,,,,,,,,,,; . 【点睛】 本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键. 4.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α. 【详解】 试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2 解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α. 【详解】 试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可; (2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可; (3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α; (4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系. 试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°, ∴∠1+∠2=∠C+∠α, ∵∠C=90°,∠α=50°, ∴∠1+∠2=140°, 故答案为140; (2)由(1)得∠α+∠C=∠1+∠2, ∴∠1+∠2=90°+∠α. 故答案为∠1+∠2=90°+∠α. (3)∠1=90°+∠2+∠α.理由如下:如图③, 设DP与BE的交点为M, ∵∠2+∠α=∠DME,∠DME+∠C=∠1, ∴∠1=∠C+∠2+∠α=90°+∠2+∠α. (4)如图④, 设PE与AC的交点为F, ∵∠PFD=∠EFC, ∴180°-∠PFD=180°-∠EFC, ∴∠α+180°-∠1=∠C+180°-∠2, ∴∠2=90°+∠1-∠α. 故答案为∠2=90°+∠1-∠α 点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键. 5.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3) 【分析】 (1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A 解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3) 【分析】 (1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解; ②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解; (2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系; (3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得. 【详解】 (1)①过F作FG//AB,如图: ∵AB∥CD,FG∥AB, ∴CD∥FG, ∴∠ABF=∠BFG,∠CDF=∠DFG, ∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF, ∵BF平分∠ABE, ∴∠ABE=2∠ABF, ∵DF平分∠CDE, ∴∠CDE=2∠CDF, ∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140, ∴∠ABF+∠CDF=70, ∴∠DFB=∠ABF+∠CDF=70, 故答案为:70; ②∠F=∠BED, 理由是:分别过E、F作EN//AB,FM//AB, ∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE, ∴∠BED=∠ABE+∠CDE, ∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线, ∴∠ABE=2∠ABF,∠CDE=2∠CDF, 即∠BED=2(∠ABF+∠CDF); 同理,由FM//AB,可得∠F=∠ABF+∠CDF, ∴∠F=∠BED; (3)2∠F+∠BED=360°. 如图,过点E作EG∥AB, 则∠BEG+∠ABE=180°, ∵AB∥CD,EG∥AB, ∴CD∥EG, ∴∠DEG+∠CDE=180°, ∴∠BEG+∠DEG=360°-(∠ABE+∠CDE), 即∠BED=360°-(∠ABE+∠CDE), ∵BF平分∠ABE, ∴∠ABE=2∠ABF, ∵DF平分∠CDE, ∴∠CDE=2∠CDF, ∠BED=360°-2(∠ABF+∠CDF), 由①得:∠BFD=∠ABF+∠CDF, ∴∠BED=360°-2∠BFD, 即2∠F+∠BED=360°; (3)∵,∠F=α, ∴, 解得:, 如图, ∵∠CDE 为锐角,DF是∠CDE的角平分线, ∴∠CDH=∠DHB, ∴∠F∠DHB,即, ∴, 故答案为:. 【点睛】 本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解. 6.(1)证明见解析;(2),理由见解析;(3). 【分析】 (1)只需要证明即可证明; (2)作.由平行线的性质即可证明,同理可证明,由此再根据角平分线的定义和平角的性质可得; (3)设,.,则,想办 解析:(1)证明见解析;(2),理由见解析;(3). 【分析】 (1)只需要证明即可证明; (2)作.由平行线的性质即可证明,同理可证明,由此再根据角平分线的定义和平角的性质可得; (3)设,.,则,想办法构建方程即可解决问题; 【详解】 解:(1)如图1中, ,, , . (2)结论:如图2中,. 理由:作. ,, , ,, , , 同理可证:, ∵平分,平分, ,, ∵,, ; (3)设,., ∵, ∴, ∵, ∴, , , , 平分, , , 平分, , , , , , . 【点睛】 本题考查平行线的判定和性质,角平分线的定义等知识,(2)中能正确作出辅助线是解题关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题关键. 7.(1)见详解;(2)100°;(3)∠P=45°- 【分析】 (1)由“对顶三角形”的性质得,从而得,进而即可得到结论; (2)设=x, =y,则=x+20°,=y-20°,可得∠ABC+∠DCB= 解析:(1)见详解;(2)100°;(3)∠P=45°- 【分析】 (1)由“对顶三角形”的性质得,从而得,进而即可得到结论; (2)设=x, =y,则=x+20°,=y-20°,可得∠ABC+∠DCB=y-20°,根据三角形内角和定理,列出方程,即可求解; (3)设∠ABE=∠CBE=x,∠ACD=∠BCD=y,可得x+y=90°-,结合∠CEP+∠ACD=∠CDP+∠P,即可得到结论. 【详解】 (1)证明:∵在“对顶三角形”与中, ∴, ∵, ∴, ∵, ∴, 又∵ ∴; (2)∵比大20°,+=+, ∴设=x, =y,则=x+20°,=y-20°, ∵, ∴∠ABC+∠ACB=180°-∠A=180°-=x+y, ∴∠ABC+∠DCB=∠ABC+∠ACB-= x+y- x-20°=y-20°, ∵∠ABC+∠DCB+=180°, ∴y-20°+y=180°,解得:y=100°, ∴=100°; (3)∵,是的角平分线, ∴设∠ABE=∠CBE=x,∠ACD=∠BCD=y, ∴2x+2y+=180°,即:x+y=90°-, ∵和的平分线和相交于点P, ∴∠CEP=(180°-2y-x),∠CDP=(180°-2x-y), ∵∠CEP+∠ACD=∠CDP+∠P, ∴∠P=(180°-2y-x)+y-(180°-2x-y)= x+y=45°-, 即:∠P=45°-. 【点睛】 本题主要考查角平分线的定义,三角形内角和定理,三角形外角的性质,熟练掌握“对顶三角形”的性质,是解题的关键. 8.(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18° 【分析】 (1)根据题意可得的三分线有两种情况,画图根据三角形的外角性质即可得的度数; (2)根据、分别是邻三分线和邻 解析:(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18° 【分析】 (1)根据题意可得的三分线有两种情况,画图根据三角形的外角性质即可得的度数; (2)根据、分别是邻三分线和邻三分线,且可得,进而可求的度数; (3)根据的三分线所在的直线与的三分线所在的直线交于点.分四种情况画图:情况一:如图①,当和分别是“邻三分线”、“邻三分线”时;情况二:如图②,当和分别是“邻三分线”、“邻三分线”时;情况三:如图③,当和分别是“邻三分线”、“邻三分线”时;情况四:如图④,当和分别是“邻三分线”、“邻三分线”时,再根据,,根据三角形外角性质,即可求出的度数. 【详解】 解:(1)如图, 当BD是“邻AB三分线”时,; 当BD是“邻BC三分线”时,; (2)在△BPC中, ∵, ∴, 又∵BP、CP分别是邻BC三分线和邻BC三分线, ∴, ∴, ∴, 在△ABC中,, ∴. (3)分4种情况进行画图计算: 情况一:如图①,当BP和CP分别是“邻AB三分线”、“邻AC三分线”时, ∴; 情况二:如图②,当BP和CP分别是“邻BC三分线”、“邻CD三分线”时, ∴; 情况三:如图③,当BP和CP分别是“邻BC三分线”、“邻AC三分线”时, ∴; 情况四:如图④,当BP和CP分别是“邻AB三分线”、“邻CD三分线”时, ; 综上所述:的度数为:或或或. 【点睛】 本题考查了三角形的外角性质,解决本题的关键是掌握并灵活运用三角形的外角性质,注意要分情况讨论. 9.(1)不变,135°;(2)①90°;②60°或45° 【分析】 (1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AC、BC分别是∠BAO和∠ABO角的平分线得出∠BAC=∠OAB 解析:(1)不变,135°;(2)①90°;②60°或45° 【分析】 (1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AC、BC分别是∠BAO和∠ABO角的平分线得出∠BAC=∠OAB,∠ABC=∠ABO,由三角形内角和定理即可得出结论; (2)①由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAD的角平分线可知∠EAF=90°; ②在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论. 【详解】 解:(1)∠ACB的大小不变, ∵直线MN与直线PQ垂直相交于O, ∴∠AOB=90°, ∴∠OAB+∠OBA=90°, ∵AC、BC分别是∠BAO和∠ABO角的平分线, ∴∠BAC=∠OAB,∠ABC=∠ABO, ∴∠BAC+∠ABC=(∠OAB+∠ABO)=×90°=45°, ∴∠ACB=135°; (2)①∵AE、AF分别是∠BAO和∠OAD的角平分线, ∴∠EAO=∠BAO,∠FAO=∠DAO, ∴∠EAF=(∠BAO+∠DAO)=×180°=90°. 故答案为:90; ②∵∠BAO与∠BOQ的角平分线相交于E, ∴∠EAO=∠BAO,∠EOQ=∠BOQ, ∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO, 即∠ABO=2∠E, 在△AEF中,∵有一个角是另一个角的3倍,故分四种情况讨论: ①∠EAF=3∠E,∠E=30°,则∠ABO=60°; ②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍去); ③∠F=3∠E,∠E=22.5°,∠ABO=45°; ④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍去). ∴∠ABO为60°或45°. 【点睛】 本题考查的是三角形内角和定理、三角形外角性质以及角平分线的定义的运用,熟知三角形内角和是180°是解答此题的关键. 10.(1)70°;(2)DE∥BF,证明见解析;(3)54° 【分析】 (1)根据四边形内角和计算即可; (2)根据平角的定义和等量代换可得∠MBC+∠CDN=180°,再根据角平分线的定义得到∠CBF 解析:(1)70°;(2)DE∥BF,证明见解析;(3)54° 【分析】 (1)根据四边形内角和计算即可; (2)根据平角的定义和等量代换可得∠MBC+∠CDN=180°,再根据角平分线的定义得到∠CBF+∠CDE=90°,从而推出∠EDB+∠FBD=180°,可得结论; (3)根据五等分得到∠CDP+∠CBP=36°,连接PC并延长,证明∠DCB=∠DPB+∠CBP+∠CDP,即可计算. 【详解】 解:(1)∵∠A=∠C=90°,∠ABC=70°, ∴∠ADC=360°-90°-90°-70°=110°, ∴∠NDC=180°-110°=70°; (2)DE∥BF,如图,连接BD, ∵∠ABC+∠ADC=180°, 且∠MBC+∠ABC=180°,∠CDN+∠ADC=180°, ∴∠MBC+∠CDN=180°, ∵∠CBF=∠MBC,∠CDE=∠CDN, ∴∠CBF+∠CDE=90°, ∵∠C=90°, ∴∠CBD+∠CDB=90°, ∴∠EDB+∠FBD=∠CBF+∠CDE+∠CBD+∠CDB=180°, ∴DE∥BF; (3)∵∠MBC+∠CDN=180°, ∴∠CDP+∠CBP=(∠MBC+∠CDN)=36°, 连接PC并延长, ∵∠DCE=∠CDP+∠CPD,∠BCE=∠CPB+∠CBP, ∴∠DCB=∠DCE+∠BCE=∠DPB+∠CBP+∠CDP, ∴∠DPB=90°-36°=54°. 【点睛】 本题考查多边形内角和与外角,三角形内角和定理,平行线的判定等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 苏教七 年级 下册 期末 解答 压轴 数学 模拟 题目 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文