激光光谱学基础知识课件.pdf
《激光光谱学基础知识课件.pdf》由会员分享,可在线阅读,更多相关《激光光谱学基础知识课件.pdf(352页珍藏版)》请在咨信网上搜索。
-118 111111:111uuu111+Basic Knowledge forSpectroscopy:Absorption and Emission of Light21.1 Plancks Radiation Law and the Einstein Coefficient.71.1.1 Density of field modes in a cavity.81.1.2 Quantization of the field energy.101.1.3 Plancks law.121.1.4 Fluctuations in photon number.141.1.5Einsteins A and B coefficients.151.1.6 Characteristics of the three Einstein transitions.181.1.7 Optical excitation of two-level atoms.201.1.8 Theory of optical attenuation.241.1.9 Population inversion:optical amplification.281.1.10 Radiation pressure.321.2?f)pf.341.2.1mkf.351.2.2pM/.361.2.3.371.2.4 BXL.401.2.51.411.2.6.?.421.2.7 Light Shifts.441.2.81|?f.451.31.Width and Profiles of Spectral Lines.491.3.1O.501.3.2O(Power Broadening).571.3.3kZ.?.581.3.4-EO.611.3.5VOpd/.631.3.61Transit-Time Broading.681.3.7/.691.3.8!.711.3.9O.731.3.10.731.41Y1Discrete and Continuum Spectra.75111111Spectroscopic Instrumentation772.1Spectrographs and Monochromators.772.1.15UBasic Properties.782.1.2c1OPrism Spectrometer.871-112.1.311OGrating Spectrometer.882.2Z Interferometers.932.2.1VgBasic Concepts.942.2.2ZMichelsoninterfereometer.952.2.3Mach-Zehnder Interferometer.992.2.4NZTunable Interferometers.1182.31OZmComparison between spectrometers and interferometers.1192.3.11E+Spectral resolving power.1192.3.281+Light-Grathering Power.1212.4(Accurate Wavelength Measurements.1222.4.1 O(Precision and Accuracy of WavelengthMeasurements.1232.4.2Today.s Wavemeters.1242.51&Detection of Light.1262.61&.1262.711-1Laser as Spectroscopic Light Sources.1302.7.1-1?Fundamentals of Laser.1302.7.2KThreshold Condition.1312.7.3Rate Equations.1342.8-1?nLaser Resonators.1352.8.11?nOpen Optical Resonator.1362.8.2?nmSpatial Field Distributions in the Open Resonators 1382.8.3Stable and Unstable Resonators.1402.8.4Ring Resonators.1402.8.5?nFrequency Spectrum of Passive Resonators.1422.9Spectral Characteristics of Laser Emission.1422.9.1-?n-1Active Resonators and Laser Modes.1432.9.2O?Gain Saturation.1442.9.3m?Spatial Hole Burning.1462.9.4-1OMultimode Lasers and Gain Competition.1472.9.5VMode Pulling.1482.10-1?y.1502.10.1Line Selection:-1N-1.1502.10.2Suppression of Transverse Modes.1542.10.3Selection of Single Longitudinal.1542.10.4.1622.11-1Linewidth of Single-Mode Lasers.1652.12N-1.1672.12.1N4+-1Semiconductor-Diode Lasers.1682.12.2/-1Dye Laser.1722.12.3Of-1Excimer Lasers.1732-11111nnn-111VVV444111FFF111111Doppler-Limited Absorption andFluorescence Spectroscopy with Lasers1753.1Advantages of Lasers in Spectroscopy.1753.1.1 Classical absorption spectroscopy.1753.1.2 absorption spectroscopy with tunable lasers radiation sources.1763.2High-Sensitivity Methods of Absorption Spectroscopy.1773.2.1 Frequency Modulation.1783.2.2 Intracavity AbsorptionnS.1813.2.3nSP(cavity ringdown,CRD).1843.3Direct Determination of Absorbed Photons.1853.4Ionization Spectroscopy.1883.5Laser Magnetic Resonance and Stark Spectroscopy.1903.6Laser-Induced Fluorescence.191111ooo555-111111Nonlinear Laser Spectroscopy1944.155Linear Absorption and Nonlinear Absorption.1944.2!?Saturation of Inhomogenerous Line Profiles.1964.2.1 Bennet?AHole Burning.1964.2.2=0Lamb Dip.2034.2.3?1Saturation Spectroscopy.2034.3?1Polarization Spectroscopy.2134.41f1Multiphoton Spectroscopy.2174.4.1V1f.2184.4.2V1f1.220111111($)!VVV?-111111Optical Pumping and Double-ResonanceTechniques2235.11.2235.2V?-11.2295.2.11-V?.2295.2.211V?OODR(Optical-Optical Double Resonance).2315.2.3 SEP(Stimulated Emission Pumping)1.237111888VVVVVV-111111Doppler-free and sub-Doppler laser Spectroscopy2436.1VV1f.2436.2fV-u1:Sub-Doppler spectroscopy in molecular beam.2476.3VY1OODR-u1.2556.4?1.256111mmmEEE111ZZZ111(Time Resolved Spectroscopy and Coherent Spec-troscopy)2587.1Generation of Short Laser Pulses.2597.1.1 Time Profiles of Pulsed Lasers.2593-117.1.2 Q-m-1(Q-switched lasers).2627.1.3 Mode Locking of Lasers.2667.1.4(Kerr Lens Mode Locking).2697.1.5 optical pulsecompression:1:c:?:.2697.1.6C-1).2787.2Measurement of Ultrashort Pulses.2817.3Lifetime Measurement with Lasers.2867.4Pump-and-Probe Technique.2897.5Z1Coherent Spectroscopy.294111lll-111.111Laser Raman Spectroscopy2978.1.VgBasic Considerations.2978.25-1.1?EExperimental Techniques of Linear Laser Raman Spec-troscopy.2988.35-1.1Nonlinear Raman Spectroscopy.2998.4.1AApplications of Laser Raman Spectroscopy.302111-111111333zzzAAAApplications of Laser Spectroscopy in Chemistry3039.1-113zA:(&.3039.2-1pzA.3039.3-113AA.3049.4-13zAA.3059.5-1l.3069.6-13f!?f-EUD4LA.3099.7-113i$.310111-111eee%?fffOptical Cooling of Atoms by Laser31210.11|?f.31810.2p?f.32210.2.1?f-1.32210.2.2?fO=?z.32610.31Ve%.33010.3.1.e.34010.4?fI?n.34010.5-1?f.34110.5.15?fX1.34110.5.21.34210.6 summary.3441113471113484-1111:1u1+Basic Knowledge forSpectroscopy:Absorption and Emission ofLightLASER:Light Amplification by Stimulated Emission of Radiationg5gOd1960cgTownes/Basov/Prokhorov:1964cn,u-1Herzberg:1971cz,f1Schawlow/Bloembergen:1981cn,-11:1997n,-1e%?fZewail:2000z,-1zKetterle:2001cn,-1e%,BECC-12002c?1?ff(?A?k?ff(?5g1.1?ffnzf)?z:1?ffNXU?;r;g,-u;Vu?ffu9;-EL?fmU&E;Zeeman?AStark effects4;(?gp;mE1&E!-1:1.5:1u1rUd,15,:5(86),605.7nmk0.00047nm(?u400MHz);He-Ne-1632.8nm,-1108nm(?u9MHz).A:X?,=,?1,1?E.2.5:=15?5d.?,1u?,55-11:15&,1uk0.01rad(1rad=57.2960),-1u3 104lA:-1-1X,X,?Jp,-1?1l/&,?5AOr,Z6,|-1p5u5-1%,|-13,?Y|,c,/kA.3.Z5:3fGS1fZfG1fKZ1Z555n,5,Zm,5,Z.-18p55u,rZ1.mZ5(108A),ZApmZ5k-1:Z1A:=E?31y,Z1&E?nu5.X,1GpC,EE,E;3-1y?y.4.5:15.1U3mp8:3,rB?.-1p551U3mp85Ly,o,-1p5K1U3mp8,-1NB?.y(1012s),(1015s)C(1018s)?-1.,&NL,qL,)LCz.5.?:L13Srfn-15,?L?O(,=-1?S,L-1p5,5,Z5,5nn:|=1mWC-1?,?p100N-1?L?p1010A:-1p?kA.?-13?:NC)AZAp,U,JL77Lzz.-13S,mmSm?S5UU,1D-1n:.1.-11n:du1pA?41nU1&E?u4oCU1&E6-112.-1,Im94:?|;n-11n;knr-1lLz;N(5);(!)6663-1?fw(AFM):7-11&?7&?3LApE,5&NLf&?k3?u?GCu&?&?k3?f?d?u)Cz?UClk?-1Lc,KBL/,?l&?51#?u)ZZ&?Czd&L?fu?5LCzuu?u?7L!aU:N(X?Al2O3);N(X,/);N(XHeNeCO2);N(Xz;,GaAs);8-11.U:Y(104W);(1014W);n!4b?(100nm)1(1.222mm)5-1|?ffPfU?)gdf-1)pUf345?OCzc|$ufU=-1U(J51E1?-/rN?ff5p:?f-:-1,q?f-(-1)(atom laser),up!pZ5!$u?f,31Af1 1eVb0.380.4551f1 1eV7,0.4550.49210.4920.57710.5770.5971?1103 102cm10.5970.6221?1103 102cm10.6220.781?1103 102cm1C?0.81.31?1103 102cm1?1.33?1103 102cm1?38?1103 102cm19?814?=1U=?f=kU1905cEinstein1?Auf5b5)1926cf1fPlanck,Einsteinufuf,?f)k1917cEinstein?fpu?fu1n6u?(y3E2|fzE,B7LfL?;nN(1A59?fp(JPlanckfb3;n:b=|UOThe main concerns of the present chapter are the thermalexcitaion of electromagnetic radiation and the basic konds of interaction that occur between orlight and atomin transition10-11!99-u(1)?fmUu)pa.ynpXL1?fu-u9ALOduunA?u9XX,?u1?fNO1?fp)?A1.1.1Density of field modes in a cavity?vkn?un?nnm3km(Jbn/GA5/nL,p93n.|EPlancknL3T,9enSNTNO5(1)n|m|-u8LO;we consider the spatial dependence of the field in the cavity and derive an expression for thenumber of different modes of excitation of the field(2)|mA5OTz-uUwe consider the time dependence of the field and calculate the energy carried by each excita-tion mode at temperature T.13m|v2E(r,t)=1c22E(r,t)t2,(1.1):wave equation.E(r,t)=0,(1.2):Maxwell equationv.)keEx(rt)=Ex(t)cos(kxx)sin(kyy)sin(kzz)Ey(rt)=Ey(t)sin(kxx)cos(kyy)sin(kzz)Ez(rt)=Ez(t)sin(kxx)sin(kyy)cos(kzz),(1.3)pE(t)(wavevector)kkekx=x/L,ky=y/L,kz=z/L,x,y,z=0,1,2,.,(1.4,1.5)k?=k=kbeknK|E(rt)nvk|11-11NyE(rt)v.XEx(rt)3y=0,Lz=0,LecosUsin.v?U3n?:vMaxwell(1.2)(1.3)?:k.E=0,(1.6)=EkRzk,E(t)k?(transverse polarization)=1,2I.Ux,y,z,z|(x,y,z)nS|(?A|gd)?|-uL|5#Nkxnm:/L3k k+dk|8Lu3k k+dk1/8:8z:mN(/L)3,be?v(/L)3)K18(4k2dk)(/L)3 2,(1.7)|(k)nNk8the number of modesper unit volume of cavity having their wavevector in the specified range)d(1.7)(k)dk=k2dk/2,(1.8)(JnA5(angular frequency)X:=ck,(1.9)()d=2d/2c3.(1.10)|PkP=1,2R(V k2/2)dk R(V 2/2c3)d,(1.11)pVnNz?12-111.1.2Quantization of the field energy1OTz|;U(1.3)(1.1),|(1.9)2E(t)t2=2E(t),(1.12)?f$)E(t)=E(0)exp(it),(1.13)E(0)3;nk?;n3|UL:12Rcavity(?0E(r,t)2+10B(r,t)2)dV,(1.14)?0:the electric permittirity(0)of free space0:the electric magnetic permeability of free spacec=(?00)1/2,(1.15)E,B|(1.3),(1.13)E|E(vecr,t)=B(r,t)/t|UB?S|USUCzAenNIt is convenient to average the field energy over a cycle of oscillator since the energy variationthat occurs during a cycle is not usually susceptible to measurement-75The cycle-average theorem:A,BEmCzeit,KA,B(A)(B)=12|k?kXdd(1.14)?zoU12Rcavity?0|E(rt)|2dV,(1.19)y3PlankfzbK31900cb|zuUU(qh?Ufhq.Ufh1f.KhL?.q1|kUqh.3;n1.19|Uk?(1.13)E0k?|E(t)v(1.12)?fTef?nK?fUUEn=(n+1/2),n=0,1,.,(1.20)dd:13-1112Rcavity?0|E(rt)|2dV=(n+1/2),(1.21)w,fz(1.13)?E0ky3|;?n=|UAfz?n7L|f?n?NK;Cqv|fn|zfz?fX1.3L?fU?Ud(1.20)En=(n+1/2)A?f?u1n-?n=0?f?uLEkU1/23u|?f:U?2?|*(the factor that governs the observation)puU?UEn=(n+1/2)3:UNnUff(quanta)1f?3TO(?)f)(?)1f1.4LOSc|X?f$AU?5?fzk?14-111.1.3Plancks lawT,939d)oU3APn?f9-u1n-uLBoltzianfPn=exp(En/kBT)Pnexp(En/kBT),(1.22)kB,Z=Pnexp(En/kBT).ZX8zfPnPn=1(1.20)fUL:U-eU=exp(/kBT),(1.23)K9APn=Un/PnUn,(1.24)1:Pn=0Un=11U,(1.25)dkPn=(1 U)Un,(1.26)3T|p-u1fn:n=PnnPn=(1 U)PnnUn=U1U=(1 U)UUPnUn,(1.27)p(1.25),(1.26)|(1.23),1f:n=1exp(/kBT)1,(1.28)(JPlanck9-u15-111.53Te9-u1fn31?Uyez1u?u11.6uTUPlanck1.10(1.28)ON3+dm|83z,TUn+:U85TUWT()d:WT()d=nd=n3d/2c3=32c3dexp(/kBT)1,(1.29)uUWT()Planck3p$4Planck/:kBT ,WT()2kBT/2c3,(1.30)16-111900cRayleighRayleigh;4=PlanckukBT|5gTn|ko|UC:R0WT()d=(12V)Rcavity?0|ET(rt)|2dV,(1.34)1.1.4Fluctuations in photon number1fuLynS|z1fu)kAI3?L,5=kIOnmq3(GX?bqX8XnXnXUX?A3UGu1f?3nA|/7IXndqn|Xnznk,(81fA1fnd(1.26)Pn(1.27)1fO(J(1.28)d/wXnw3n1fmmmmAmw/Unergodic theorem of statistical mechanics according to which time averages are equivalent toaverages taken over a larger number of exactly similar systems,each maintained in a fixed state.Thefictitious collection of similar systems is called an ensemble;the system in the ensemble are distrib-uted among their various possible states in according with the appropriate probability distributionfor the system considered.APn5(nn?d(1.27)kU=n/(1+n),(1.35)(1.26):Pn=(nn/(1+n)1+n,(1.36)nrPnn5B/1.7fAPn|1f?1gwn=0okAPnnON?BoltzmanApU?f?(JPn3n=nvkA517-11Planck1fAPnk9the geometric distribution.1f8?dnx(n)2=Pn(n n)2Pn=n2(n)2,(1.39)n2(n)2=2(n)2,(1.40)n=p(n)2+n,(1.41)w3noun,unkn=n+12(n 1),(1.42)1fO?n3?ATn(J=n?n?1fzg=ImuAI5?SkEm(JEmuI?k1.1.5Einsteins A and B coefficientsy3?fpLnEinsteinn5n)NLX?f1-1118-11Einsteinn3?f1funnbbvpLf?n?3Einsteinnvkwfb?fU?vk7|Ufzn9?fpnS?ffpbN?f?Nunz?fkPU?E1E2=E2 E1,(1.43)1f?fu?f3mLUU?fU?Og1g2?fU?P?uE1,E2?fN1N2N1+N2=Nl?w?f9-u4nkNX?fmpIE,X4BLnT1r3n;.?3UL9WT()WE()L?oUW()=WT()+WE(),(1.44)WE()n?k9m5p6#PA5?EinsteinnboU3?fU?NCC7L1fuAXe?f32mkkAA21?fgu$U1uU1fA21(Spontaneous emission rate)y?u1?fevk?fU2UU?e3UW()K1 2LU1fyAbuW(),XB12B12W()(absorption rate)19-11L*n?3dW()OrU?eU?Aw,yOr7Lu)PB21W(),p-B21W()(stimulated emission rate)A21,B12,B21W()=?fU?kdfy3?nnU?Kb?fuNvN1,N2mCz1wN1,N2UCdN1/dt=dN2/dt=N2A21 N1B12W()+N2B21W(),(1.45)(1.45)H9Ak(Jn?fU?Kb?fNvOu5N1,N2mw/CzdN1/dt=0dN2/dt=N2A21 N1B12W()+N2B21W()Odn$L9L.,=m,d(1.45)N2A21 N1B12W()+N2B21W()=0,(1.46)9vk?n(1.46)U9?zWT()WT()=A21(N1/N2)B12B21,(1.47)U?N1,N239BoltzmannseXe:N1N2=g1exp(E1/kBT)g2exp(E2/kBT)=(g1g2)exp(/kBT),(1.48)d(1.47):WT()=A21g1g2exp(/kBT)B12B21,(1.49)WT()LdEinsteinXBoltzmannAu?fU?(JATPlanck(1.29)u9ULekT=?:g1g2B12=B21,(1.50)h32c3B21=A21,(1.51)nEinsteinXpXJ-uLEinsteinnPlancksU-Lg,/1unu(1.50),(1.51)EinsteinXmXk?5XuUWT()m59?Um5?1kA5X111?(1.50),(1.51)Eu1?ffNN=A(orientations are randomly distributed)NXNNp5=?ffpU5?BX?1A?1NpK,?N?ffU3(51A5?91fAPnPn=(1 g1N2g2N1)(g1N2g2N1)n.20-111.1.6Characteristics of the three Einstein transitionsku?nLA5.ALCq.k39nuL.Planck(1.29)(1.51):B21WT()=A21n,(1.52)=9-ugu3|1fu:B21WT()+A21=A21(n+1),(1.53)ul(1.28),(1.52):A21B21WT()=1n=exp(kBT)1,(1.54)n 1 for/kBT 0.7?nT=300K 50m,(1.55)=A6 1012Hz,?kBT1d?A kBT A21 kBT A21 B21WT(),(1.57)=guu9-99UWT()?1013Hz refer to optical electromagnetic radiation as ligh.3eW()wk?1?z1?(optical experiments)3C?1b?;.:3 1015s1,3 1019J?5591fA,L n1+n=g1N2g2N1,(1.58)Pn=(g1N2g2N1)n(1 g1N2g2N1),(1.60)5g?11X-uu)31Lk?z.oU(1.44)W()5g?1?zWE()LeIE?%L)d?-uu?.?U(saturation radiative energy density)Ws=3/2c3.v21-11WsB21=A21=?U-uuguuu1N-U3dWsd 1014dJm31rrI=cWLA?rIs=cWs=cA21/B21=3/2c231 3 1015s1Isd=3 106dWm2D16 1010s11rRdIs 1.8 105Wm2;.u1010Hz,Ad=21010s1.BW=A,K1r2 105Wm2.wrD1v)r1r-ugu-1c-1r1XU)v1r-uguuu1A?k?f1f/guu#dlm?1A1r|!1fnS1f?I(W.m3)E(V.m1)n/V(m3)1f/1061021014102cw laser10510410151020pulse laser101810810181018LrD1r?1r?1A?k1f?f2Lguu5-11rNL?uOdn3(n-u11OdXAB?fs?1.9LUu)nLA5Ad-?f-u)1-u1knu1k1A5-u1rOr()?5C-uA5y,guu)11?u?vUnguu1Du15guu1?22-11?1?fG$UpU?f(N1,N2)C?1L?fNduL1f?-u?fd-u1f8u1XJ3L?G1L?fNrUC?,?fLguuUkXe#uA21A21+B21W=11+(W/Ws),(1.64)guu1(J1PB1L?fNmL*ATrN+”o9-uUWT()3?A(1.57)gupu9-u9?pu1013Hz,?9UCqoU(1.44)W()5g?1?zWE()LeIE?%L)d?-u3e?31?f-k?9k$(=?f)91-?f31.8$U?9N1=N=?fv?(1.43)?1?f5yA-U?E2J5-udTX1wU?fU?vN1+N2=N,(1.61)U?/AO?U?(g1=g2=1)(1.50)BXC.dAXBXeI(1.45)z:dN1/dt=dN2/dt=N2A+(N2 N1)BW,(1.62)Wg,n)U3?WnC3!?X?nXJWXK(1.62)mk,UIO)k(1.62)N2A21 N1B12W()+N2B21W()=0,(1.46)N2A+(N2 N1)BW=0UN2Ws+(N2 N1)W=0|N2+N1=N?fN1=A+BWA+2BWN=Ws+WWs+2WNN2=BWA+2BWN=WWs+2WNdd?U?u?U5Cz?W Ws6C551?f?(saturation)?U.?1?A?23-11Steady-state atomic populations as functions of radiative energy densitynOd(W=)absorption:N1B=NA(Ws+)(Ws+2)Wsstimulated emission:N2B=NA2(Ws+2)Wsspontaneous emission:N2A=NAWs+2ewgu8?Uz?fwU-uC56X,U?N/2guuCA/2U24-11Mean rates of the three Einstein transitions in Units of the A coefficient as functions of theradiative energy density.y3?fm6(1.62)3(1.61)e):N1(t)=N1(0)NWs+Ws+2exp(A+2B)t)+NWs+Ws+2zXJt=0k?f?u?51mK?f?u-u8N2(t)=NWs+21 exp(A+2B)t?m(A+2BW)t 1,(1.73)-?fCN2=NBW/(A+2BW),(1.74)?1m?f$-Ud1=?f?G?fk;UN2=NBWA+2BW=NW(3/2c3)+2W,(1.75)l=U1?fp(J1fm#-um6eNumber of excited atoms as a function of the time tXJy34?51-u?f-uULguuL=y3t=014KkdN2/dt=N2A N2(t)=N2(0)exp(At)26-11zPC?fufu1rUm6XP*?F1u?OdAXR=1/AR?fflurescent or radiative lifetimeN2/Nw?f?u-A?f-um?,?A?f?#u1fEeUAuAmmu)?Xd(1.74)N2/NA?f-um1.1.8Theory of optical attenuationc!LbU.1PUrDl?.!u?fOdnPL.p,b?f-ukw,?1r1Dz.!e!b11,uc!7n.31PL*5ckV)eu*MaxwellIOPnn?fNw0dielectric mediumIIOBL0*n1rdPoyntingI(z,t)=0c2E(z,t)B(z,t),1.8.1n1w1r3P0attenuatingdielectric materialUeDlUC=expK()z,1.8.2K()=2()/c,1.8.3nK()3PX(attenuation coefficient).1X(extinction coefficient)()Le(refractive index)()()+i()2=()=0()+i00(),1.8.40(dielectric function)()NyA5,0,00OLJ.,e3,00,K1X(),du)1P.05zX(linear susceptibility)(),0()X()=1+(),1.8.5zX()01A5./dA.O.?1X.1.du03?|E)4zP?|r4zu|P=?0E(1.79)?=1+0du03XC(kc/)2=1+,(1.80)=0+i00,(1.81)kc/=+i=n,(1.82)27-11:refractive index,L:extinction coefficient,Ln:n=?=n0 i,n0:L:L()=Ne2|D12|23?0V0+i(0)2+2+|V|2/2,(2.122)2.122)2()=Ne2|D12|23?0V0+i0(0)2+02+(0/)|V|2/2,(2.138)zDE=E0ei(tk.z),3zLn0k=n=0?,kn=k0n,|k|=2/E=E0expi(t kn.z)E=E0expi(t 20(n0 i).z)E=E0expi(t 20n0.z+i20.z)E=E0exp(20.z)expik0(ct n0.z)EnJL=D,6u:vp=cn01+vgL:vg=ddk=cn(1+ndnd)=cn1+ndnd:3?Dn)DdkVg+z:?3()?)?|5d|XaA|+:|r?|(r)I|F|KF,=k=(r)?=|(r)|=k0n,k0nvp=1/|(r)|3!0nvpduvk1|ULn5m!3()30kD41&1&E1z1wX1U1()L0D3DLu)C:DdU”D”+vg=dd+UDL&DBohm5fn6:In general,the phase velocity has little physical significance;for example,the speed oftransmission of a signal through a dielectric is given by the group velocity,as is also the speed oftransport of energy.Un?y?1u,k?u11ucS?&3Dd+28-11d&oucu1e+L&01Lc01+L1?+2L&;Kramers-Kronig dispersio- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 激光 光谱 基础知识 课件
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【wei****ing】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【wei****ing】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【wei****ing】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【wei****ing】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文