江苏省扬州市2019年中考数学真题试题(含解析).doc
《江苏省扬州市2019年中考数学真题试题(含解析).doc》由会员分享,可在线阅读,更多相关《江苏省扬州市2019年中考数学真题试题(含解析).doc(14页珍藏版)》请在咨信网上搜索。
扬州市2019学初中毕业、升学统一考试数学试题 一、 选择题(本大题共8小题,每小题3分,共24分) 1.下列图案中,是中心对称图形的是( D ) A. B. C . D. 【考点】:中心对称图形 【解析】:中心对称图形绕某一点旋转180°与图形能够完全重合 【答案】:D. 2.下列个数中,小于-2的数是( A ) A.- B.- C.- D.-1 【考点】:数的比较大小,无理数 【解析】:根据二次根式的定义确定四个选项与-2的大小关系, 可得-比-2小 【答案】:A. 3.分式可变形为( D ) A. B.- C. D. 【考点】:分式的化简 【解析】:分式的分母整体提取负号,则每一个都要变号 【答案】:故选B. 4.一组数据3、2、4、5、2,则这组数据的众数是( A) A.2 B.3 C.3.2 D.4 【考点】:统计,数据的集中趋势与离散程度 【解析】: 众数是出现次数最多的数据 【答案】:故选:A 5.如图所示物体的左视图是( B ) 【考点】:三视图 【解析】:三视图的左视图从物体的左边看 【答案】:选B. 6.若点P在一次函数的图像上,则点P一定不在( C ). A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【考点】:一次函数的图像 【解析】: 坐标系中,一次函数经过第一、二、四象限,所以不经过第三象限 【答案】:C 7.已知n正整数,若一个三角形的三边长分别是n+2、n+8、3n,则满足条件的n的值有( D ) A.4个 B. 5个 C. 6个 D. 7个 【考点】:正整数,三角形三边关系 【解析】: 方法一:∵n是正整数 ∴n=1时,三边为3,9,3构不成三角形,不符合 n=2时,三边为4,10,6构不成三角形,不符合 n=3时,三边为5,11,9可以构成三角形,符合 n=4时,三边为6,12,12可以构成三角形,符合 n=5时,三边为7,13,15可以构成三角形,符合 n=6时,三边为8,14,18可以构成三角形,符合 n=7时,三边为9,15,21可以构成三角形,符合 n=8时,三边为10,16,24可以构成三角形,符合 n=9时,三边为11,17,27可以构成三角形,符合 n=10时,三边为12,18,30不可以构成三角形,不符合 ∴总共7个 方法二:当n+8最大时∴n=3 当3n最大时∴n=4,5,6,7,8,9 综上:n总共有7个 【答案】:选:D. 8.若反比例函数的图像上有两个不同的点关于y轴对称点都在一次函数y=-x+m的图像上,则m的取值范围是( C ) A. B.① C. D. 【考点】:函数图像,方程,数形结合 【解析】: ∵反比例函数上两个不同的点关于y轴对称的点 在一次函数y=-x+m图像上 ∴是反比例函数与一次函数y=-x+m有两个不同的交点 联立两个函数解方程 ∵有两个不同的交点 ∴有两个不等的根△=m2-8>0 根据二次函数图像得出不等式解集 所以 【答案】:C. 二、 填空题(本大题共10小题,每小题3分,共30分) 9.2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全场约1790000米,数据1790000用科学记数法表示为 1.79×106 . 【考点】:科学计数法 【答案】:1.79×106 10.因式分解:a3b-9ab=ab(3-x)(3+x) 。 【考点】:因式分解, 【解析】:先提取公因式,在使用平方差公式因式分解 【答案】: ab(3-x)(3+x) 11.扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下 从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是 0.92 .(精确到0.01) 【考点】:频率与频数 【解析】:频率接近于一个数,精确到0.01 【答案】:0.92 12.一元二次方程的根式__x1=1 x2=2___. 【考点】:解方程 【解析】: 解: x1=1 x2=2 【答案】:x1=1 x2=2. 13.计算:的结果是 . 【考点】:根式的计算,积的乘方 【解析】: 【答案】:. 14.将一个矩形 纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD= 128°. 【考点】:矩形的性质,折叠问题,等腰三角形,平行线,平角 【解析】: 解:延长DC到F ∵矩形纸条折叠 ∴∠ACB=∠∠BCF ∵AB∥CD ∴∠ABC=∠BCF=26° ∴∠ACF=52° ∵∠ACF+∠ACD=180° ∴∠ACD=128° 【答案】:128° 15.如图,AC是⊙O的内接正六边形的一边,点B在弧AC上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=__15_。 【考点】:圆心角,圆内正多边形 【解析】: 解:∵AC是⊙O的内接正六边形的一边 ∴∠AOC=360°÷6=60° ∵BC是⊙O的内接正十边形的一边 ∴∠BOC=360°÷10=36° ∴∠AOB=60°-36°=24° 即360°÷n=24°∴n=15 【答案】:15. 16.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD 外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN= . 【考点】:正方形,中位线,勾股定理 【解析】:连接FC,∵M、N分别是DC、DF的中点 ∴FC=2MN ∵AB=7,BE=5 且四ABCD,四EFGB是正方形 ∴FC==13 ∴MN= 【答案】:MN= 17.如图,将四边形ABCD绕顶点A顺时针旋转45°至AB’C’D’的位置,若AB=16cm,则图中阴影部分的面积为 32π . 【考点】:扇形的面积,阴影部分面积 【解析】: ∵阴影部分面积=扇形BB’A的面积+四边形ABCD的面积-四AB’C’D’的面积 ∴阴影部分面积=扇形BB’A的面积= 【答案】:32π. 18.如图,在△ABC中,AB=5,AC=4,若进行一下操作,在边BC上从左到右一次取点D1、D2、D3、D4…;过点D1作AB、AC的平行线分别交于AC、AB与点E1、F1;过点D2作AB、AC的平行线分别交于AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交于AC、AB于点E3、F3…, 则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)= 40380 . 【考点】:相似三角形,比例性质 【解析】:∵D1E1∥AB D1F1∥AC ∴ ∵AB=5 AC=4 ∴ ∴ ∴4D1E+5D1F=20 有2019组,即2019×20=40380 【答案】:40380 三、解答题(本大题共有10小题,共96分) 19.(本题满分8分)计算或化简: (1) (2) 解原式=2-1-4× 解原式 = =-1 =a+1 【考点】:有理数的计算,因式分解,分式化简,三角函数 20.(本题满分8分)解不等式组,并写出它的所有负整数解 解:∴负整数解为-3,-2,-1 【考点】:一元一次不等式组,取整数,不等式的解集 21.(本题满分8分)扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图. 根据以上信息,请回答下列问题: (1)表中a= 120 ,b= 0.1 ; (2)请补全频数分布直方图; (3)若该校有学生1200人,试估计该校学生每天阅读时间超过1小时的人数. 【解析】: (1)36÷0.3=120(人) 总共120人,∴a=120 12÷120=0.1=b (2)如图 0.4×120=48(人) (3)1200×(0.4+0.1)=600人 答:该校学生每天阅读时间超过1小时的人数为600人. 【考点】:数据的收集与整理,统计图的运用 22.(本题满分8分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数都表示为两个素数的和”.如20=3+17. (1)从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的 概率是 ; (2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,用画树状图或列表的方法,求抽到的两个素数之和等于30的概率. 【解析】: (1) 总共有四个,7有一个,所以概率就是1÷4= (2) 根据题意得: ∴抽到两个素数之和等于30的概率是4÷12= 【考点】:概率,素数的定义 23.(本题满分10分)“绿水青山就是金山银山”,为了进一步优化河道环境,甲乙两工程队承担河道整治任务,甲、乙两个工程队每天共整治河道1500米,甲工程队整治3600米所用的时间与乙工程队整治2400米所用时间相等。甲工程队每天整治河道多少米? 【考点】:分式方程的应用 【解析】: 解设甲工程队每天整治河道xm,则乙工程队每天整治(1500-x)m 由题意得: 经检验的x=900是该方程的解 答:甲工程队每天整治河道900米。 24.(本题满分10分)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10. (1)求证:∠BEC=90°; (2)求cos∠DAE. 【考点】:平行四边形的性质 ,勾股定理,三角函数 【解析】:证明(1) ∵四ABCD是平行四边形 ∴AD∥BC ∴∠AED=∠EAB ∵AE平分∠DAB∴∠DAE=∠EAB ∴∠AED=∠DAE ∴AD=DE=10∴BC=10 ∵BE=8 CE=6 ∴BE2+CE2=BC2 ∴△BEC为直角三角形∴∠BEC=90° 解(2)∵ DE=10 CE=6 ∴AB=16 ∵∠BEC=90° ∴AE2= ∴cos∠EAB= ∵∠DAE=∠EAB ∴cos∠DAE== 25.(本题满分10分)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交于AB于P,且CP=CB。 (1)求证:BC是⊙O的切线; (2)已知∠BAO=25°,点Q是弧AmB上的一点。 ①求∠AQB的度数; ②若OA=18,求弧AmB的长。 【考点】:直线与圆的位置关系,扇形的弧长,圆心角于圆周角关系, 等腰三角形 【解析】: 解(1)连接OB ∵CP=CB ∴∠CPB=∠CBP ∵OA⊥OC ∴∠AOC=90° ∵OA=OB ∴∠OAB=∠OBA ∵∠PAO+∠APO=90° ∴∠ABO+∠CBP=90° ∴∠OBC=90° ∴BC是⊙O的切线 (2)①∵∠BAO=25° OA=OB ∴∠BAO=∠OBA=25° ∴∠AOB=130°∴∠AQB=65° ②∵∠AOB=130° OB=18 ∴l弧AmB=(360°-130°)π×18÷180=23π 26.(本题满分10分) 如图,平面内的两条直线l1、l2,点A、B在直线l2上,过点A、B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C 请依据上述定义解决如下问题 (1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= 2 ; (2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积; (3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°, T(AB,AC)=2,T(BC,AB)=6,求T(BC,CD). 【考点】:新定义,投影问题,相似三角形,母子相似,点到直线的距离, 含30°的直角三角形 【解析】:解答: (1)过C作CE⊥AB,垂足为E ∴由T(AC,AB)=3投影可知AE=3∴BE=2即T(BC,AB)=2 (2)过点C作CF⊥AB于F ∵∠ACB=90°CF⊥AB∴△ACF∽△CBF∴CF2=AF·BF ∵T(AC,AB)=4,T(BC,AB)=9∴AF=4 BF=9即CF=6 ∴S△ABC=(AB·CF)÷2=13×6÷2=39 (3)过C作CM⊥AB于M,过B作BN⊥CD于N ∵∠A=60°∠ACD=90°∴∠CDA=30° ∵T(AB,AC)=2,T(BC,AB)=6∴AC=2 BM=6 ∵∠A=60° CM⊥AB∴AM=1 CM= ∵∠CDA=30°∴MD=3 BD=3 ∵∠BDN=∠CDA=30°∴DN= ∵T(BC,CD)=CN∴CN=CD+DN=+= 【答案】:(1)2 ;(2)39;(3) 27.(本题满分12分)问题呈现 如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°,点M在线段AB上,且AM=a,点P沿折线AD-DG运动,点Q沿折线BC-CG运动(与点G不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x. (1)若a=12. ①如图1,当点P在线段AD上时,若四边形AMQP的面积为48, 则x的值为____2_____; ②在运动过程中,求四边形AMQP的最大面积; (2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围. 【考点】:矩形,等腰直角三角形,梯形面积,动点问题,函数思想, 分段函数的最值 【解析】: 解:(1)①由题意得:PQ=20 AM=a=12 S四AMQP= 解得x=3 ②当P在AD上时,即0≤x≤10,S四AMQP= S四AMQP= 当x=10时,S四AMQP最大值=160 当P在DG上,即10≤x≤20,S四AMQP= QP=40-2x,S四AMQP==-x2+26x 当x=13时,S四AMQP最大值=169 综上:x=13时,S四AMQP最大值=169 (2)由上知:PQ=40-2x S四AMQP= ∵10≤x≤20 对称轴为:x= 开口向下 ∴离对称轴越远取值越小 当≤15时, S四AMQP最小值=10a≥50 得a≥5 ∴5≤a≤20 当>15时 S四AMQP最小值=40+a≥50 得a≥20 综上所述:5≤a≤20 【答案】:(1)3 ;(2)169;(3)5≤a≤20 28.如图,已知等边△ABC的边长为8,点P事AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’. (1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为__4____; (2)如图2,当PB=5时,若直线l∥AC,则BB’的长度为 ; (3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积; (4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值。 【考点】:折叠问题,等腰三角形,动态问题,对称,路径问题 【解析】 解:(1)∵折叠∴PB=PB’=4 ∵△ABC为等边三角形 ∴∠A=60° ∴△APB’是等边三角形 即∠B’PA=60° ∴AB’=AP=4 (2)∵l∥AC ∴∠BPB’=120°∴∠PBB’=30° ∵PB=5 ∴BB’=5 (3)过B作BF⊥AC,垂足为F,过B’作B’E⊥AC,垂足为E ∵B与B’关于l对称 ∴B’E=BF=4 ∴S△ACB’= △ACB’面积不变 (4)由题意得: l变化中,B’的运动路径为以P为圆心,PB长为半径的圆上 过P作B’P⊥AC,交AC于E,此时B’E最长 AP=2,AE=1 ∴PE= ∴B’E=B’P+PE=6+ ∴S△ACB’最大值=(6+)×8÷2=24+4 【答案】(1)4;(2)5;(3)面积不变;(4)24+4 14- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 扬州市 2019 年中 数学 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文