云南省曲靖市2018年中考数学真题试题(含解析).doc
《云南省曲靖市2018年中考数学真题试题(含解析).doc》由会员分享,可在线阅读,更多相关《云南省曲靖市2018年中考数学真题试题(含解析).doc(21页珍藏版)》请在咨信网上搜索。
云南省曲靖市2018年中考数学真题试题 一、选择题(共8题,每题4分) 1.(4分)﹣2的绝对值是( ) A.2 B.﹣2 C. D. 2.(4分)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为( ) A. B. C. D. 3.(4分)下列计算正确的是( ) A.a2•a=a2 B.a6÷a2=a3 C.a2b﹣2ba2=﹣a2b D.(﹣)3=﹣ 4.(4分)截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿元美元,则3.11×104亿表示的原数为( ) A.2311000亿 B.31100亿 C.3110亿 D.311亿 5.(4分)若一个正多边形的内角和为720°,则这个正多边形的每一个内角是( ) A.60° B.90° C.108° D.120° 6.(4分)下列二次根式中能与2合并的是( ) A. B. C. D. 7.(4分)如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=的图象经过点A的对应点A′,则k的值为( ) A.6 B.﹣3 C.3 D.6 8.(4分)如图,在正方形ABCD中,连接AC,以点A为圆心,适当长为半径画弧,交AB、AC于点M,N,分别以M,N为圆心,大于MN长的一半为半径画弧,两弧交于点H,连结AH并延长交BC于点E,再分别以A、E为圆心,以大于AE长的一半为半径画弧,两弧交于点P,Q,作直线PQ,分别交CD,AC,AB于点F,G,L,交CB的延长线于点K,连接GE,下列结论:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE:S△CAB=1:4.其中正确的是( ) A.①②③ B.②③④ C.①③④ D.①②④ 二、填空题(共6题,每题3分) 9.(3分)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是 . 10.(3分)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE= °. 11.(3分)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是 . 12.(3分)关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a= (一个即可). 13.(3分)一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为 元. 14.(3分)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018= 个单位长度. 三、解答题 15.(5分)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣1 16.先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0. 17.如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM. (1)求证:△AFN≌△CEM; (2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数. 18.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件? 19.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图. 依据以上信息解答以下问题: (1)求样本容量; (2)直接写出样本容量的平均数,众数和中位数; (3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数. 20.某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台. (1)求y关于x的函数解析式; (2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元? 21.数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张. (1)用树状图或者列表表示所有可能出现的结果; (2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率. 22.如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC. (1)判断PM与⊙O的位置关系,并说明理由; (2)若PC=,求四边形OCDB的面积. 23.如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=. (1)求抛物线的解析式; (2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF; (3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由. 参考答案与试题解析 一、选择题(共8题,每题4分) 1.(4分)﹣2的绝对值是( ) A.2 B.﹣2 C. D. 【解答】解:﹣2的绝对值是2, 即|﹣2|=2. 故选:A. 2.(4分)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为( ) A. B. C. D. 【解答】解:从左面看去,是两个有公共边的矩形,如图所示: 故选:D. 3.(4分)下列计算正确的是( ) A.a2•a=a2 B.a6÷a2=a3 C.a2b﹣2ba2=﹣a2b D.(﹣)3=﹣ 【解答】解:A、原式=a3,不符合题意; B、原式=a4,不符合题意; C、原式=﹣a2b,符合题意; D、原式=﹣,不符合题意, 故选:C. 4.(4分)截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿元美元,则3.11×104亿表示的原数为( ) A.2311000亿 B.31100亿 C.3110亿 D.311亿 【解答】解:3.11×104亿=31100亿 故选:B. 5.(4分)若一个正多边形的内角和为720°,则这个正多边形的每一个内角是( ) A.60° B.90° C.108° D.120° 【解答】解:(n﹣2)×180°=720°, ∴n﹣2=4, ∴n=6. 则这个正多边形的每一个内角为720°÷6=120°. 故选:D. 6.(4分)下列二次根式中能与2合并的是( ) A. B. C. D. 【解答】解:A、,不能与2合并,错误; B、能与2合并,正确; C、不能与2合并,错误; D、不能与2合并,错误; 故选:B. 7.(4分)如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=的图象经过点A的对应点A′,则k的值为( ) A.6 B.﹣3 C.3 D.6 【解答】解:如图所示:∵将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,反比例函数y=的图象经过点A的对应点A′, ∴A′(3,1), 则把A′代入y=, 解得:k=3. 故选:C. 8.(4分)如图,在正方形ABCD中,连接AC,以点A为圆心,适当长为半径画弧,交AB、AC于点M,N,分别以M,N为圆心,大于MN长的一半为半径画弧,两弧交于点H,连结AH并延长交BC于点E,再分别以A、E为圆心,以大于AE长的一半为半径画弧,两弧交于点P,Q,作直线PQ,分别交CD,AC,AB于点F,G,L,交CB的延长线于点K,连接GE,下列结论:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE:S△CAB=1:4.其中正确的是( ) A.①②③ B.②③④ C.①③④ D.①②④ 【解答】解:①∵四边形ABCD是正方形, ∴∠BAC=∠BAD=45°, 由作图可知:AE平分∠BAC, ∴∠BAE=∠CAE=22.5°, ∵PQ是AE的中垂线, ∴AE⊥PQ, ∴∠AOL=90°, ∵∠AOL=∠LBK=90°,∠ALO=∠KLB, ∴∠LKB=∠BAE=22.5°; 故①正确; ②∵OG是AE的中垂线, ∴AG=EG, ∴∠AEG=∠EAG=22.5°=∠BAE, ∴EG∥AB, 故②正确; ③∵∠LAO=∠GAO,∠AOL=∠AOG=90°, ∴∠ALO=∠AGO, ∵∠CGF=∠AGO,∠BLK=∠ALO, ∴∠CGF=∠BLK, 在Rt△BKL中,tan∠CGF=tan∠BLK=, 故③正确; ④连接EL, ∵AL=AG=EG,EG∥AB, ∴四边形ALEG是菱形, ∴AL=EL=EG>BL, ∴, ∵EG∥AB, ∴△CEG∽△CBA, ∴=, 故④不正确; 本题正确的是:①②③, 故选:A. 二、填空题(共6题,每题3分) 9.(3分)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是 ﹣3m . 【解答】解:∵水位升高2m时水位变化记作+2m, ∴水位下降3m时水位变化记作﹣3m. 故答案是:﹣3m. 10.(3分)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE= n °. 【解答】解:∵四边形ABCD是⊙O的内接四边形, ∴∠A+∠DCB=180°, 又∵∠DCE+∠DCB=180° ∴∠DCE=∠A=n° 故答案为:n 11.(3分)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是 18 . 【解答】解:∵D,E分别是AB,BC的中点, ∴AC=2DE=5,AC∥DE, AC2+BC2=52+122=169, AB2=132=169, ∴AC2+BC2=AB2, ∴∠ACB=90°, ∵AC∥DE, ∴∠DEB=90°,又∵E是BC的中点, ∴直线DE是线段BC的垂直平分线, ∴DC=BD, ∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18, 故答案为:18. 12.(3分)关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a= ﹣2 (一个即可). 【解答】解:∵关于x的方程ax2+4x﹣2=0(a≠0)有实数根, ∴△=42+8a≥0, 解得a≥﹣2, ∴负整数a=﹣1或﹣2. 故答案为﹣2. 13.(3分)一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为 80 元. 【解答】解:设该书包的进价为x元, 根据题意得:115×0.8﹣x=15%x, 解得:x=80. 答:该书包的进价为80元. 故答案为:80. 14.(3分)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018= 673 个单位长度. 【解答】解:由图可得,P0P1=1,P0P2=1,P0P3=1; P0P4=2,P0P5=2,P0P6=2; P0P7=3,P0P8=3,P0P9=3; ∵2018=3×672+2, ∴点P2018在正南方向上, ∴P0P2018=672+1=673, 故答案为:673. 三、解答题 15.(5分)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣1 【解答】解:原式=2+1+3﹣3 =3. 16.先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0. 【解答】解:原式=•=, 由a+b﹣=0,得到a+b=, 则原式=2. 17.如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM. (1)求证:△AFN≌△CEM; (2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数. 【解答】(1)证明:∵四边形ABCD是平行四边形, ∴CD∥AB, ∴∠AFN=∠CEM, ∵FN=EM,AF=CE, ∴△AFN≌△CEM(SAS). (2)解:∵△AFN≌△CEM, ∴∠NAF=∠ECM, ∵∠CMF=∠CEM+∠ECM, ∴107°=72°+∠ECM, ∴∠ECM=35°, ∴∠NAF=35°. 18.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件? 【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣4)个零件, 根据题意得:=, 解得:x=24, 经检验,x=24是分式方程的解, ∴x﹣4=20. 答:甲每小时做24个零件,乙每小时做20个零件. 19.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图. 依据以上信息解答以下问题: (1)求样本容量; (2)直接写出样本容量的平均数,众数和中位数; (3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数. 【解答】解:(1)样本容量为6÷12%=50; (2)14岁的人数为50×28%=14、16岁的人数为50﹣(6+10+14+18)=2, 则这组数据的平均数为=14(岁), 中位数为=14(岁),众数为15岁; (3)估计该校年龄在15岁及以上的学生人数为1800×=720人. 20.某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台. (1)求y关于x的函数解析式; (2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元? 【解答】解:(1)由题意得,0.6x+0.4×(35﹣x)=y, 整理得,y=0.2x+14(0<x<35); (2)由题意得,35﹣x≤2x, 解得,x≥, 则x的最小整数为12, ∵k=0.2>0, ∴y随x的增大而增大, ∴当x=12时,y有最小值16.4, 答:该公司至少需要投入资金16.4万元. 21.数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张. (1)用树状图或者列表表示所有可能出现的结果; (2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率. 【解答】解:(1)由题意可得, 共有12种等可能的结果; (2)∵共有12种等可能结果,其中抽取的两张卡片中每张卡片上的三条线段都能组成三角形有2种结果, ∴抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率为=. 22.如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC. (1)判断PM与⊙O的位置关系,并说明理由; (2)若PC=,求四边形OCDB的面积. 【解答】解:(1)PM与⊙O相切. 理由如下: 连接DO并延长交PM于E,如图, ∵弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合, ∴OC=DC,BO=BD, ∴OC=DC=BO=BD, ∴四边形OBDC为菱形, ∴OD⊥BC, ∴△OCD和△OBD都是等边三角形, ∴∠COD=∠BOD=60°, ∴∠COP=∠EOP=60°, ∵∠MPB=∠ADC, 而∠ADC=∠ABC, ∴∠ABC=∠MPB, ∴PM∥BC, ∴OE⊥PM, ∴OE=OP, ∵PC为⊙O的切线, ∴OC⊥PC, ∴OC=OP, ∴OE=OC, 而OE⊥PC, ∴PM是⊙O的切线; (2)在Rt△OPC中,OC=PC=×=1, ∴四边形OCDB的面积=2S△OCD=2××12=. 23.如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=. (1)求抛物线的解析式; (2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF; (3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由. 【解答】解:(1)当y=0时,x﹣=0,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得, 解得,抛物线的解析式为y=x2﹣3x﹣4; (2)∵平移直线l经过原点O,得到直线m, ∴直线m的解析式为y=x. ∵点P是直线1上任意一点, ∴设P(3a,a),则PC=3a,PB=a. 又∵PE=3PF, ∴=. ∴∠FPC=∠EPB. ∵∠CPE+∠EPB=90°, ∴∠FPC+∠CPE=90°, ∴FP⊥PE. (3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a. ∵CF=3BE=18﹣3a, ∴OF=20﹣3a. ∴F(0,20﹣3a). ∵PEQF为矩形, ∴=,=, ∴Qx+6=0+a,Qy+2=20﹣3a+0, ∴Qx=a﹣6,Qy=18﹣3a. 将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去). ∴Q(﹣2,6). 如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6. ∵CF=3BE=3a﹣18, ∴OF=3a﹣20. ∴F(0,20﹣3a). ∵PEQF为矩形, ∴=,=, ∴Qx+6=0+a,Qy+2=20﹣3a+0, ∴Qx=a﹣6,Qy=18﹣3a. 将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q(2,﹣6). 综上所述,点Q的坐标为(﹣2,6)或(2,﹣6). 21- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 云南省 曲靖市 2018 年中 数学 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文