2016年江苏省淮安市中考数学试题及答案.doc
《2016年江苏省淮安市中考数学试题及答案.doc》由会员分享,可在线阅读,更多相关《2016年江苏省淮安市中考数学试题及答案.doc(26页珍藏版)》请在咨信网上搜索。
2016年江苏省淮安市中考数学试卷 一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.下列四个数中最大的数是( ) A.﹣2 B.﹣1 C.0 D.1 2.下列图形是中心对称图形的是( ) A. B. C. D. 3.月球的直径约为3476000米,将3476000用科学记数法表示应为( ) A.0.3476×102B.34.76×104C.3.476×106D.3.476×108 4.在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是( ) A.5 B.6 C.4 D.2 5.下列运算正确的是( ) A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a4 6.估计+1的值( ) A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间 7.已知a﹣b=2,则代数式2a﹣2b﹣3的值是( ) A.1 B.2 C.5 D.7 8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( ) A.15 B.30 C.45 D.60 二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题卡相应位置上) 9.若分式在实数范围内有意义,则x的取值范围是 . 10.分解因式:m2﹣4= . 11.点A(3,﹣2)关于x轴对称的点的坐标是 . 12.计算:3a﹣(2a﹣b)= . 13.一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是 . 14.若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k= . 15.若点A(﹣2,3)、B(m,﹣6)都在反比例函数y=(k≠0)的图象上,则m的值是 . 16.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 . 17.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是 °. 18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 . 三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(1)计算:( +1)0+|﹣2|﹣3﹣1 (2)解不等式组:. 20.王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米? 21.已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF. 22.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘). (1)用树状图或列表法列出所有可能出现的结果; (2)求两个数字的积为奇数的概率. 23.为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图. 请解答下列问题: (1)本次调查的样本容量是 ; (2)补全条形统计图; (3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数. 24.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离. 25.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A. (1)判断直线MN与⊙O的位置关系,并说明理由; (2)若OA=4,∠BCM=60°,求图中阴影部分的面积. 26.甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系. (1)甲、乙两采摘园优惠前的草莓销售价格是每千克 元; (2)求y1、y2与x的函数表达式; (3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围. 27.如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0). (1)求该二次函数的表达式及点C的坐标; (2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S. ①求S的最大值; ②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值. 28.问题背景: 如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系. 小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD. 简单应用: (1)在图①中,若AC=,BC=2,则CD= . (2)如图③,AB是⊙O的直径,点C、D在⊙上, =,若AB=13,BC=12,求CD的长. 拓展规律: (3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示) (4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是 . 2016年江苏省淮安市中考数学试卷 参考答案与试题解析 一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.下列四个数中最大的数是( ) A.﹣2 B.﹣1 C.0 D.1 【考点】有理数大小比较. 【分析】根据有理数大小比较方法,正数大于零,零大于负数,正数大于一切负数解答. 【解答】解:∵﹣2<﹣1<0<1, ∴最大的数是1. 故选D. 【点评】本题考查了有理数的大小比较,是基础题,熟记比较方法是解题的关键. 2.下列图形是中心对称图形的是( ) A. B. C. D. 【考点】中心对称图形. 【分析】根据中心对称图形的特点即可求解. 【解答】解:A、不是中心对称图形,故此选项错误; B、不是中心对称图形,故此选项错误; C、是中心对称图形,故此选项正确; D、不是中心对称图形,故此选项错误. 故选:C. 【点评】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形. 3.月球的直径约为3476000米,将3476000用科学记数法表示应为( ) A.0.3476×102B.34.76×104C.3.476×106D.3.476×108 【考点】科学记数法—表示较大的数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:将3476000用科学记数法表示应为3.476×106. 故选:C. 【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 4.在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是( ) A.5 B.6 C.4 D.2 【考点】众数. 【分析】众数就是出现次数最多的数,据此即可求解. 【解答】解:∵进球5个的有2个球队, ∴这组数据的众数是5. 故选A. 【点评】本题为统计题,考查众数的意义,解题的关键是通过仔细的观察找到出现次数最多的数. 5.下列运算正确的是( ) A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a4 【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法. 【分析】根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方再把所得的幂相乘;幂的乘方,底数不变指数相乘;以及合并同类项法则对各选项分析判断即可得解. 【解答】解:A、a2•a3=a2+3=a5,故本选项错误; B、(ab)2=a2b2,故本选项正确; C、(a2)3=a2×3=a6,故本选项错误; D、a2+a2=2a2,故本选项错误. 故选B. 【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方与积的乘方,熟练掌握运算性质和法则是解题的关键. 6.估计+1的值( ) A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间 【考点】估算无理数的大小. 【分析】直接利用已知无理数得出的取值范围,进而得出答案. 【解答】解:∵2<<3, ∴3<+1<4, ∴+1在在3和4之间. 故选:C. 【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键. 7.已知a﹣b=2,则代数式2a﹣2b﹣3的值是( ) A.1 B.2 C.5 D.7 【考点】代数式求值. 【分析】直接利用已知a﹣b=2,再将原式变形代入a﹣b=2求出答案. 【解答】解:∵a﹣b=2, ∴2a﹣2b﹣3 =2(a﹣b)﹣3 =2×2﹣3 =1. 故选:A. 【点评】此题主要考查了代数式求值,利用整体思想代入求出是解题关键. 8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( ) A.15 B.30 C.45 D.60 【考点】角平分线的性质. 【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解. 【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E, 又∵∠C=90°, ∴DE=CD, ∴△ABD的面积=AB•DE=×15×4=30. 故选B. 【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键. 二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题卡相应位置上) 9.若分式在实数范围内有意义,则x的取值范围是 x≠5 . 【考点】分式有意义的条件. 【分析】分式有意义时,分母x﹣5≠0,据此求得x的取值范围. 【解答】解:依题意得:x﹣5≠0, 解得x≠5. 故答案是:x≠5. 【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零;分式无意义的条件是分母等于零. 10.分解因式:m2﹣4= (m+2)(m﹣2) . 【考点】因式分解-运用公式法. 【专题】计算题. 【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b). 【解答】解:m2﹣4=(m+2)(m﹣2). 故答案为:(m+2)(m﹣2). 【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反. 11.点A(3,﹣2)关于x轴对称的点的坐标是 (3,2) . 【考点】关于x轴、y轴对称的点的坐标. 【分析】根据关于x轴对称的点的横坐标不变,纵坐标互为相反数解答. 【解答】解:点A(3,﹣2)关于x轴对称的点的坐标是(3,2). 故答案为:(3,2). 【点评】本题考查了关于原点对称的点的坐标,关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律: (1)关于x轴对称的点,横坐标相同,纵坐标互为相反数; (2)关于y轴对称的点,纵坐标相同,横坐标互为相反数; (3)关于原点对称的点,横坐标与纵坐标都互为相反数. 12.计算:3a﹣(2a﹣b)= a+b . 【考点】整式的加减. 【专题】计算题. 【分析】先去括号,然后合并同类项即可解答本题. 【解答】解:3a﹣(2a﹣b) =3a﹣2a+b =a+b, 故答案为:a+b. 【点评】本题考查整式的加减,解题的关键是明确整式加减的计算方法. 13.一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是 . 【考点】概率公式. 【分析】直接利用黄球个数除以总数得出摸出黄球的概率. 【解答】解:∵一个不透明的袋子中装有3个黄球和4个蓝球, ∴从袋子中随机摸出一个球,摸出的球是黄球的概率是:. 故答案为:. 【点评】此题主要考查了概率公式的应用,正确掌握概率公式是解题关键. 14.若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k= 9 . 【考点】根的判别式. 【分析】根据判别式的意义得到△=62﹣4×1×k=0,然后解一次方程即可. 【解答】解:∵一元二次方程x2+6x+k=0有两个相等的实数根, ∴△=62﹣4×1×k=0, 解得:k=9, 故答案为:9. 【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 15.若点A(﹣2,3)、B(m,﹣6)都在反比例函数y=(k≠0)的图象上,则m的值是 1 . 【考点】反比例函数图象上点的坐标特征. 【分析】由点A的坐标利用反比例函数图象上点的坐标特征即可得出k值,再结合点B在反比例函数图象上,由此即可得出关于m的一元一次方程,解方程即可得出结论. 【解答】解:∵点A(﹣2,3)在反比例函数y=(k≠0)的图象上, ∴k=﹣2×3=﹣6. ∵点B(m,﹣6)在反比例函数y=(k≠0)的图象上, ∴k=﹣6=﹣6m, 解得:m=1. 故答案为:1. 【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征得出与点的坐标有关的方程是关键. 16.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 10 . 【考点】等腰三角形的性质;三角形三边关系. 【分析】根据任意两边之和大于第三边,知道等腰三角形的腰的长度是4,底边长2,把三条边的长度加起来就是它的周长. 【解答】解:因为2+2<4, 所以等腰三角形的腰的长度是4,底边长2, 周长:4+4+2=10, 答:它的周长是10, 故答案为:10 【点评】此题考查等腰三角形的性质,关键是先判断出三角形的两条腰的长度,再根据三角形的周长的计算方法,列式解答即可. 17.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是 120 °. 【考点】圆锥的计算. 【分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解. 【解答】解:圆锥侧面展开图的弧长是:2π×2=4π(cm), 设圆心角的度数是n度.则=4π, 解得:n=120. 故答案为120. 【点评】本题主要考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2 . 【考点】翻折变换(折叠问题). 【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到=求出FM即可解决问题. 【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小. ∵∠A=∠A,∠AMF=∠C=90°, ∴△AFM∽△ABC, ∴=, ∵CF=2,AC=6,BC=8, ∴AF=4,AB==10, ∴=, ∴FM=3.2, ∵PF=CF=2, ∴PM=1.2 ∴点P到边AB距离的最小值是1.2. 故答案为1.2. 【点评】本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型. 三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(1)计算:( +1)0+|﹣2|﹣3﹣1 (2)解不等式组:. 【考点】实数的运算;零指数幂;负整数指数幂;解一元一次不等式组. 【分析】(1)本题涉及零指数幂、绝对值、负整数指数幂3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果; (2)根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可. 【解答】解:(1)(+1)0+|﹣2|﹣3﹣1 =1+2﹣ =2; (2), 不等式①的解集为:x<4, 不等式②的解集为:x>2. 故不等式组的解集为:2<x<4. 【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、负整数指数幂等考点的运算.同时考查了解一元一次不等式组,解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 20.王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米? 【考点】分式方程的应用. 【分析】设原计划每小时检修管道为xm,故实际施工每天铺设管道为1.2xm.等量关系为:原计划完成的天数﹣实际完成的天数=2,根据这个关系列出方程求解即可. 【解答】解:设原计划每小时检修管道x米. 由题意,得﹣=2. 解得x=50. 经检验,x=50是原方程的解.且符合题意. 答:原计划每小时检修管道50米. 【点评】本题考查分式方程的应用,列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.其中找到合适的等量关系是解决问题的关键. 21.已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF. 【考点】菱形的性质;全等三角形的判定. 【专题】证明题. 【分析】由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由SAS证明△ADE≌△CDF即可. 【解答】证明:∵四边形ABCD是菱形, ∴AD=CD, ∵点E、F分别为边CD、AD的中点, ∴AD=2DF,CD=2DE, ∴DE=DF, 在△ADE和△CDF中,, ∴△ADE≌△CDF(SAS). 【点评】此题主要考查了全等三角形的判定、菱形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键. 22.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘). (1)用树状图或列表法列出所有可能出现的结果; (2)求两个数字的积为奇数的概率. 【考点】列表法与树状图法. 【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果; (2)由两个数字的积为奇数的情况,再利用概率公式即可求得答案. 【解答】解:(1)画树状图得: 则共有12种等可能的结果; (2)∵两个数字的积为奇数的4种情况, ∴两个数字的积为奇数的概率为: =. 【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 23.为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图. 请解答下列问题: (1)本次调查的样本容量是 60 ; (2)补全条形统计图; (3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数. 【考点】条形统计图;用样本估计总体;扇形统计图. 【分析】(1)由A的人数及其人数占被调查人数的百分比可得; (2)根据各项目人数之和等于总数可得C选项的人数; (3)用样本中最想去湿地公园的学生人数占被调查人数的比例乘总人数即可. 【解答】解:(1)本次调查的样本容量是15÷25%=60; (2)选择C的人数为:60﹣15﹣10﹣12=23(人), 补全条形图如图: (3)×3600=1380(人). 答:估计该校最想去湿地公园的学生人数约由1380人. 故答案为:60. 【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 24.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离. 【考点】解直角三角形的应用. 【专题】探究型. 【分析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=CN﹣CM,从而可以求得AB的长. 【解答】解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示, 由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°, ∴CM=米, DN=米, ∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米, 即A、B两点的距离是(40+20)米. 【点评】本题考查解直角三角形的应用,解题的关键是明确题意,画出相应的图形,利用数形结合的思想解答问题. 25.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A. (1)判断直线MN与⊙O的位置关系,并说明理由; (2)若OA=4,∠BCM=60°,求图中阴影部分的面积. 【考点】直线与圆的位置关系;扇形面积的计算. 【分析】(1)MN是⊙O切线,只要证明∠OCM=90°即可. (2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可. 【解答】解:(1)MN是⊙O切线. 理由:连接OC. ∵OA=OC, ∴∠OAC=∠OCA, ∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A, ∴∠BCM=∠BOC, ∵∠B=90°, ∴∠BOC+∠BCO=90°, ∴∠BCM+∠BCO=90°, ∴OC⊥MN, ∴MN是⊙O切线. (2)由(1)可知∠BOC=∠BCM=60°, ∴∠AOC=120°, 在RT△BCO中,OC=OA=4,∠BCO=30°, ∴BO=OC=2,BC=2 ∴S阴=S扇形OAC﹣S△OAC=﹣=﹣4. 【点评】本题考查直线与圆的位置关系、扇形面积、三角形面积等知识,解题的关键是记住切线的判定方法,扇形的面积公式,属于中考常考题型. 26.甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系. (1)甲、乙两采摘园优惠前的草莓销售价格是每千克 30 元; (2)求y1、y2与x的函数表达式; (3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围. 【考点】分段函数;函数最值问题. 【分析】(1)根据单价=,即可解决问题. (2)y1函数表达式=50+单价×数量,y2与x的函数表达式结合图象利用待定系数法即可解决. (3)画出函数图象后y1在y2下面即可解决问题. 【解答】解:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克=30元. 故答案为30. (2)由题意y1=18x+50, y2=, (3)函数y1的图象如图所示, 由解得,所以点F坐标(,125), 由解得,所以点E坐标(,650). 由图象可知甲采摘园所需总费用较少时<x<. 【点评】本题考查分段函数、一次函数,单价、数量、总价之间的关系,解题的关键是熟练掌握待定系数法,学会利用图象确定自变量取值范围,属于中考常考题型. 27.如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0). (1)求该二次函数的表达式及点C的坐标; (2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S. ①求S的最大值; ②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值. 【考点】二次函数综合题. 【专题】综合题. 【分析】(1)把A点和B点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标 (2)①连结OF,如图,设F(t,﹣ t2+t+8),利用S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,利用三角形面积公式得到S△CDF=﹣t2+6t+16,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值; ②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣ t2+t+12),然后把E(t﹣8,﹣ t2+t+12)代入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值. 【解答】解:(1)把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得,解得, 所以抛物线的解析式为y=﹣x2+x+8; 当y=0时,﹣ x2+x+8=0,解得x1=﹣4,x2=8, 所以C点坐标为(8,0); (2)①连结OF,如图,设F(t,﹣ t2+t+8), ∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF, ∴S△CDF=S△ODF+S△OCF﹣S△OCD=•4•t+•8•(﹣t2+t+8)﹣•4•8 =﹣t2+6t+16 =﹣(t﹣3)2+25, 当t=3时,△CDF的面积有最大值,最大值为25, ∵四边形CDEF为平行四边形, ∴S的最大值为50; ②∵四边形CDEF为平行四边形, ∴CD∥EF,CD=EF, ∵点C向左平移8个单位,再向上平移4个单位得到点D, ∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣ t2+t+12), ∵E(t﹣8,﹣ t2+t+12)在抛物线上, ∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7, 当t=7时,S△CDF=﹣(7﹣3)2+25=9, ∴此时S=2S△CDF=18. 【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,掌握点平移的坐标规律. 28.问题背景: 如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系. 小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD. 简单应用: (1)在图①中,若AC=,BC=2,则CD= 3 . (2)如图③,AB是⊙O的直径,点C、D在⊙上, =,若AB=13,BC=12,求CD的长. 拓展规律: (3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示) (4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是 PQ=AC或PQ=AC . 【考点】圆的综合题. 【分析】(1)由题意可知:AC+BC=CD,所以将AC与BC的长度代入即可得出CD的长度; (2)连接AC、BD、AD即可将问题转化为第(1)问的问题,利用题目所给出的证明思路即可求出CD的长度; (3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,由(2)问题可知:AC+BC=CD1;又因为CD1=D1D,所以利用勾股定理即可求出CD的长度; (4)根据题意可知:点E的位置有两种,分别是当点E在直线AC的右侧和当点E在直线AC的左侧时,连接CQ、CP后,利用(2)和(3)问的结论进行解答. 【解答】解:(1)由题意知:AC+BC=CD, ∴3+2=CD, ∴CD=3,; (2)连接AC、BD、AD, ∵AB是⊙O的直径, ∴∠ADB=∠ACB=90°, ∵, ∴AD=BD, 将△BCD绕点D,逆时针旋转90°到△AED处,如图③, ∴∠EAD=∠DBC, ∵∠DBC+∠DAC=180°, ∴∠EAD+∠DAC=180°, ∴E、A、C三点共线, ∵AB=13,BC=12, ∴由勾股定理可求得:AC=5, ∵BC=AE, ∴CE=AE+AC=17, ∵∠EDA=∠CDB, ∴∠EDA+∠ADC=∠CDB+∠ADC, 即∠EDC=∠ADB=90°, ∵CD=ED, ∴△EDC是等腰直角三角形, ∴CE=CD, ∴CD=; (3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1, 连接D1A,D1B,D1C,如图④ 由(2)的证明过程可知:AC+BC=D1C, ∴D1C=, 又∵D1D是⊙O的直径, ∴∠DCD1=90°, ∵AC=m,BC=n, ∴由勾股定理可求得:AB2=m2+n2, ∴D1D2=AB2=m2+n2, ∵D1C2+CD2=D1D2, ∴CD=m2+n2﹣=, ∵m<n, ∴CD=; (3)当点E在直线AC的左侧时,如图⑤, 连接CQ,PC, ∵AC=BC,∠ACB=90°, 点P是AB的中点, ∴AP=CP,∠APC=90°, 又∵CA=CE,点Q是AE的中点, ∴∠CQA=90°, 设AC=a, ∵AE=AC, ∴AE=a, ∴AQ=AE=, 由勾股定理可求得:CQ=a, 由(2)的证明过程可知:AQ+CQ=PQ, ∴PQ=a+a, ∴PQ=AC; 当点E在直线AC的右侧时,如图⑥, 连接CQ、CP, 同理可知:∠AQC=∠APC=90°, 设AC=a, ∴AQ=AE=, 由勾股定理可求得:CQ=a, 由(3)的结论可知:PQ=(CQ﹣AQ), ∴PQ=AC. 综上所述,线段PQ与AC的数量关系是PQ=AC或PQ=AC. 【点评】本题考查圆的综合问题,每一问都紧扣着前一问的结论,涉及勾股定理、圆周角定理,旋转的性质等知识,解题的关键是就利用好已证明的结论来进行解答,考查学生综合运用知识的能力.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 江苏省 淮安市 中考 数学试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文