2015年江苏省南京市中考数学试题及答案.doc
《2015年江苏省南京市中考数学试题及答案.doc》由会员分享,可在线阅读,更多相关《2015年江苏省南京市中考数学试题及答案.doc(23页珍藏版)》请在咨信网上搜索。
2015年江苏省南京市中考数学试卷 一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的) 1.(2分)(2015•南京)计算:|﹣5+3|的结果是( ) A. ﹣2 B. 2 C. ﹣8 D. 8 2.(2分)(2015•南京)计算(﹣xy3)2的结果是( ) A. x2y6 B. ﹣x2y6 C. x2y9 D. ﹣x2y9 3.(2分)(2015•南京)如图,在△ABC中,DE∥BC,=,则下列结论中正确的是( ) A. = B. = C. = D. = 4.(2分)(2015•南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是( ) A. 2.3×105辆 B. 3.2×105辆 C. 2.3×106辆 D. 3.2×106辆 5.(2分)(2015•南京)估计介于( ) A. 0.4与0.5之间 B. 0.5与0.6之间 C. 0.6与0.7之间 D. 0.7与0.8之间 6.(2分)(2015•南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为( ) A. B. C. D. 2 二、填空题(本大题共10小题,每小题2分,共20分) 7.(2分)(2015•南京)4的平方根是 ;4的算术平方根是 . 8.(2分)(2015•南京)若式子在实数范围内有意义,则x的取值范围是 . 9.(2分)(2015•南京)计算的结果是 . 10.(2分)(2015•南京)分解因式(a﹣b)(a﹣4b)+ab的结果是 . 11.(2分)(2015•南京)不等式组的解集是 . 12.(2分)(2015•南京)已知方程x2+mx+3=0的一个根是1,则它的另一个根是 ,m的值是 . 13.(2分)(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是( , ). 14.(2分)(2015•南京)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示: 工种 人数 每人每月工资/元 电工 5 7000 木工 4 6000 瓦工 5 5000 现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差 (填“变小”、“不变”或“变大”). 15.(2分)(2015•南京)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E= °. 16.(2分)(2015•南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=,则y2与x的函数表达式是 . 三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来. 18.(7分)(2015•南京)解方程:. 19.(7分)(2015•南京)计算:(﹣)÷. 20.(8分)(2015•南京)如图,△ABC中,CD是边AB上的高,且=. (1)求证:△ACD∽△CBD; (2)求∠ACB的大小. 21.(8分)(2015•南京)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图: (1)本次检测抽取了大、中、小学生共 名,其中小学生 名; (2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为 名; (3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论. 22.(8分)(2015•南京)某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币. (1)求取出纸币的总额是30元的概率; (2)求取出纸币的总额可购买一件51元的商品的概率. 23.(8分)(2015•南京)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60) 24.(8分)(2015•南京)如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H. (1)求证:四边形EGFH是矩形; (2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路. 25.(10分)(2015•南京)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3) 26.(8分)(2015•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE. (1)求证:∠A=∠AEB; (2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形. 27.(10分)(2015•南京)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系. (1)请解释图中点D的横坐标、纵坐标的实际意义; (2)求线段AB所表示的y1与x之间的函数表达式; (3)当该产品产量为多少时,获得的利润最大?最大利润是多少? 2015年江苏省南京市中考数学试卷 参考答案与试题解析 一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的) 1.(2分)(2015•南京)计算:|﹣5+3|的结果是( ) A. ﹣2 B. 2 C. ﹣8 D. 8 考点: 有理数的加法;绝对值.菁优网版权所有 分析: 先计算﹣5+3,再求绝对值即可. 解答: 解:原式=|﹣2| =2. 故选B. 点评: 本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数. 2.(2分)(2015•南京)计算(﹣xy3)2的结果是( ) A. x2y6 B. ﹣x2y6 C. x2y9 D. ﹣x2y9 考点: 幂的乘方与积的乘方.菁优网版权所有 分析: 根据幂的乘方和积的乘方的运算方法:①(am)n=amn(m,n是正整数);②(ab)n=anbn(n是正整数);求出计算(﹣xy3)2的结果是多少即可. 解答: 解:(﹣xy3)2 =(﹣x)2•(y3)2 =x2y6, 即计算(﹣xy3)2的结果是x2y6. 故选:A. 点评: 此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(am)n=amn(m,n是正整数);②(ab)n=anbn(n是正整数). 3.(2分)(2015•南京)如图,在△ABC中,DE∥BC,=,则下列结论中正确的是( ) A. = B. = C. = D. = 考点: 相似三角形的判定与性质.菁优网版权所有 分析: 由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误. 解答: 解:∵DE∥BC, ∴△ADE∽△ABC, ∴, ∵=, ∵=, 故A、B选项均错误; ∵△ADE∽△ABC, ∴==,=()2=, 故C选项正确,D选项错误. 故选C. 点评: 此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方. 4.(2分)(2015•南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是( ) A. 2.3×105辆 B. 3.2×105辆 C. 2.3×106辆 D. 3.2×106辆 考点: 科学记数法—表示较大的数.菁优网版权所有 分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 解答: 解:2014年底机动车的数量为:3×105+2×106=2.3×106. 故选C. 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 5.(2分)(2015•南京)估计介于( ) A. 0.4与0.5之间 B. 0.5与0.6之间 C. 0.6与0.7之间 D. 0.7与0.8之间 考点: 估算无理数的大小.菁优网版权所有 分析: 先估算的范围,再进一步估算,即可解答. 解答: 解:∵2.235, ∴﹣1≈1.235, ∴≈0.617, ∴介于0.6与0.7之间, 故选:C. 点评: 本题考查了估算有理数的大小,解决本题的关键是估算的大小. 6.(2分)(2015•南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为( ) A. B. C. D. 2 考点: 切线的性质;矩形的性质.菁优网版权所有 分析: 连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果. 解答: 解:连接OE,OF,ON,OG, 在矩形ABCD中, ∵∠A=∠B=90°,CD=AB=4, ∵AD,AB,BC分别与⊙O相切于E,F,G三点, ∴∠AEO=∠AFO=∠OFB=∠BGO=90°, ∴四边形AFOE,FBGO是正方形, ∴AF=BF=AE=BG=2, ∴DE=3, ∵DM是⊙O的切线, ∴DN=DE=3,MN=MG, ∴CM=5﹣2﹣MN=3﹣MN, 在Rt△DMC中,DM2=CD2+CM2, ∴(3+NM)2=(3﹣NM)2+42, ∴NM=, ∴DM=3=, 故选A. 点评: 本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键. 二、填空题(本大题共10小题,每小题2分,共20分) 7.(2分)(2015•南京)4的平方根是 ±2 ;4的算术平方根是 2 . 考点: 算术平方根;平方根.菁优网版权所有 分析: 如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果. 解答: 解:4的平方根是±2;4的算术平方根是2. 故答案为:±2;2. 点评: 此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误. 8.(2分)(2015•南京)若式子在实数范围内有意义,则x的取值范围是 x≥﹣1 . 考点: 二次根式有意义的条件.菁优网版权所有 分析: 根据二次根式的定义可知被开方数必须为非负数,列不等式求解. 解答: 解:根据题意得:x+1≥0, 解得x≥﹣1, 故答案为:x≥﹣1. 点评: 主要考查了二次根式的意义和性质. 概念:式子(a≥0)叫二次根式. 性质:二次根式中的被开方数必须是非负数,否则二次根式无意义. 9.(2分)(2015•南京)计算的结果是 5 . 考点: 二次根式的乘除法.菁优网版权所有 分析: 直接利用二次根式的性质化简求出即可. 解答: 解:=×=5. 故答案为:5. 点评: 此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键. 10.(2分)(2015•南京)分解因式(a﹣b)(a﹣4b)+ab的结果是 (a﹣2b)2 . 考点: 因式分解-运用公式法.菁优网版权所有 分析: 首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可. 解答: 解:(a﹣b)(a﹣4b)+ab =a2﹣5ab+4b2+ab =a2﹣4ab+4b2 =(a﹣2b)2. 故答案为:(a﹣2b)2. 点评: 此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题关键. 11.(2分)(2015•南京)不等式组的解集是 ﹣1<x<1 . 考点: 解一元一次不等式组.菁优网版权所有 分析: 分别解每一个不等式,再求解集的公共部分. 解答: 解:, 解不等式①得:x>﹣1, 解不等式②得:x<1, 所以不等式组的解集是﹣1<x<1. 故答案为:﹣1<x<1. 点评: 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间. 12.(2分)(2015•南京)已知方程x2+mx+3=0的一个根是1,则它的另一个根是 3 ,m的值是 ﹣4 . 考点: 根与系数的关系;一元二次方程的解.菁优网版权所有 分析: 利用一元二次方程的根与系数的关系,两根的和是﹣m,两个根的积是3,即可求解. 解答: 解:设方程的另一个解是a,则1+a=﹣m,1×a=3, 解得:m=﹣4,a=3. 故答案是:3,﹣4. 点评: 本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键. 13.(2分)(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是( ﹣2 , 3 ). 考点: 关于x轴、y轴对称的点的坐标.菁优网版权所有 分析: 分别利用x轴、y轴对称点的性质,得出A′,A″的坐标进而得出答案. 解答: 解:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′, ∴A′的坐标为:(2,3), ∵点A′关于y轴的对称点,得到点A″, ∴点A″的坐标是:(﹣2,3). 故答案为:﹣2;3. 点评: 此题主要考查了关于x轴、y轴对称点的性质. (1)关于x轴对称点的坐标特点: 横坐标不变,纵坐标互为相反数. 即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y). (2)关于y轴对称点的坐标特点: 横坐标互为相反数,纵坐标不变. 即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y). 14.(2分)(2015•南京)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示: 工种 人数 每人每月工资/元 电工 5 7000 木工 4 6000 瓦工 5 5000 现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差 变大 (填“变小”、“不变”或“变大”). 考点: 方差.菁优网版权所有 分析: 利用已知方差的定义得出每个数据减去平均数后平方和增大,进而得出方差变大. 解答: 解:∵减少木工2名,增加电工、瓦工各1名, ∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大. 故答案为:变大. 点评: 此题主要考查了方差的定义,正确把握方差中每个数据的意义是解题关键. 15.(2分)(2015•南京)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E= 215 °. 考点: 圆内接四边形的性质.菁优网版权所有 分析: 连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可. 解答: 解:如图,连接CE, ∵五边形ABCDE是圆内接五边形, ∴四边形ABCE是圆内接四边形, ∴∠B+∠AEC=180°, ∵∠CED=∠CAD=35°, ∴∠B+∠E=180°+35°=215°. 故答案为:215. 点评: 本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键. 16.(2分)(2015•南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=,则y2与x的函数表达式是 y2= . 考点: 反比例函数与一次函数的交点问题.菁优网版权所有 分析: 过A作AC⊥x轴于C,过B作BD⊥x轴于D,由于点A在反比例函数y1=上,设A(a,),求得点B的坐标代入反比例函数的解析式即可求出结果. 解答: 解:过A作AC⊥x轴于C,过B作BD⊥x轴于D, ∵点A在反比例函数y1=上, ∴设A(a,), ∴OC=a,AC=, ∵AC⊥x轴,BD⊥x轴, ∴AC∥BD, ∴△OAC∽△OBD, ∴, ∵A为OB的中点, ∴=, ∴BD=2AC=,OD=2OC=2a, ∴B(2a,), 设y2=, ∴k=2a•=4, ∴y2与x的函数表达式是:y2=. 故答案为:y2=. 点评: 本题主要考查了待定系数法求反比例函数,相似三角形的判定和性质,反比例函数中k的几何意义要注意数形结合思想的运用. 三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来. 考点: 解一元一次不等式;在数轴上表示不等式的解集.菁优网版权所有 分析: 不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可. 解答: 解:去括号,得2x+2﹣1≥3x+2, 移项,得2x﹣3x≥2﹣2+1, 合并同类项,得﹣x≥1, 系数化为1,得x≤﹣1, 这个不等式的解集在数轴上表示为: 点评: 本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 18.(7分)(2015•南京)解方程:. 考点: 解分式方程.菁优网版权所有 专题: 计算题. 分析: 观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答: 解:方程两边同乘以x(x﹣3),得2x=3(x﹣3). 解这个方程,得x=9. 检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0. 所以x=9是原方程的根. 点评: 本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验. 19.(7分)(2015•南京)计算:(﹣)÷. 考点: 分式的混合运算.菁优网版权所有 分析: 首先将括号里面通分运算,进而利用分式的性质化简求出即可. 解答: 解:(﹣)÷ =[﹣]× =[﹣]× =× =. 点评: 此题主要考查了分式的混合运算,正确进行通分运算是解题关键. 20.(8分)(2015•南京)如图,△ABC中,CD是边AB上的高,且=. (1)求证:△ACD∽△CBD; (2)求∠ACB的大小. 考点: 相似三角形的判定与性质.菁优网版权所有 分析: (1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD; (2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°. 解答: (1)证明:∵CD是边AB上的高, ∴∠ADC=∠CDB=90°, ∵=. ∴△ACD∽△CBD; (2)解:∵△ACD∽△CBD, ∴∠A=∠BCD, 在△ACD中,∠ADC=90°, ∴∠A+∠ACD=90°, ∴∠BCD+∠ACD=90°, 即∠ACB=90°. 点评: 此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理. 21.(8分)(2015•南京)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图: (1)本次检测抽取了大、中、小学生共 10000 名,其中小学生 4500 名; (2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为 3600 名; (3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论. 考点: 条形统计图;用样本估计总体;扇形统计图.菁优网版权所有 分析: (1)根据“教育部门从这三类学生群体中各抽取了10%的学生进行检测”,可得100000×10%,即可得到本次检测抽取了大、中、小学生共多少名,再根据扇形图可得小学生所占45%,即可解答; (2)先计算出样本中50米跑成绩合格的中学生所占的百分比,再乘以10万,即可解答; (3)根据条形图,写出一条即可,答案不唯一. 解答: 解:(1)100000×10%=10000(人),10000×45%═4500(人). 故答案为:10000,4500; (2)100000×40%×90%=3600(人). 故答案为:3600; (3)例如:与2010年相比,2014年该市大学生50米跑成绩合格率下降了5%(答案不唯一). 点评: 本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键. 22.(8分)(2015•南京)某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币. (1)求取出纸币的总额是30元的概率; (2)求取出纸币的总额可购买一件51元的商品的概率. 考点: 列表法与树状图法.菁优网版权所有 专题: 计算题. 分析: (1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算; (2)找出总额超过51元的结果数,然后根据概率公式计算. 解答: 解:(1)列表: 共有3种等可能的结果数,其中总额是30元占1种, 所以取出纸币的总额是30元的概率=; (2)共有3种等可能的结果数,其中总额超过51元的有2种, 所以取出纸币的总额可购买一件51元的商品的概率为. 点评: 本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率. 23.(8分)(2015•南京)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60) 考点: 解直角三角形的应用.菁优网版权所有 分析: 设B处距离码头Oxkm,分别在Rt△CAO和Rt△DBO中,根据三角函数求得CO和DO,再利用DC=DO﹣CO,得出x的值即可. 解答: 解:设B处距离码头Oxkm, 在Rt△CAO中,∠CAO=45°, ∵tan∠CAO=, ∴CO=AO•tan∠CAO=(45×0.1+x)•tan45°=4.5+x, 在Rt△DBO中,∠DBO=58°, ∵tan∠DBO=, ∴DO=BO•tan∠DBO=x•tan58°, ∵DC=DO﹣CO, ∴36×0.1=x•tan58°﹣(4.5+x), ∴x=≈=13.5. 因此,B处距离码头O大约13.5km. 点评: 本题考查了解直角三角形的应用,熟练掌握三角形中的边角关系是解题的关键. 24.(8分)(2015•南京)如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H. (1)求证:四边形EGFH是矩形; (2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路. 考点: 菱形的判定;全等三角形的判定与性质;矩形的判定.菁优网版权所有 分析: (1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH是矩形; (2)利用菱形的判定方法首先得出要证▱MNQP是菱形,只要证MN=NQ,再证∠MGE=∠QFH得出即可. 解答: (1)证明:∵EH平分∠BEF, ∴∠FEH=∠BEF, ∵FH平分∠DFE, ∴∠EFH=∠DFE, ∵AB∥CD, ∴∠BEF+∠DFE=180°, ∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°, ∵∠FEH+∠EFH+∠EHF=180°, ∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°, 同理可得:∠EGF=90°, ∵EG平分∠AEF, ∴∠EFG=∠AEF, ∵EH平分∠BEF, ∴∠FEH=∠BEF, ∵点A、E、B在同一条直线上, ∴∠AEB=180°, 即∠AEF+∠BEF=180°, ∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°, 即∠GEH=90°, ∴四边形EGFH是矩形; (2)解:答案不唯一: 由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形, 要证▱MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF, 故只要证GM=FQ,即证△MGE≌△QFH,易证 GE=FH、∠GME=∠FQH. 故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证. 点评: 此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题关键. 25.(10分)(2015•南京)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3) 考点: 作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质.菁优网版权所有 分析: ①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可. 解答: 解:满足条件的所有图形如图所示: 点评: 此题主要考查了作图﹣应用与设计作图,关键是掌握等腰三角形的判定方法. 26.(8分)(2015•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE. (1)求证:∠A=∠AEB; (2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形. 考点: 圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.菁优网版权所有 分析: (1)根据圆内接四边形的性质可得∠A+∠BCD=180°,根据邻补角互补可得∠DCE+∠BCD=180°,进而得到∠A=∠DCE,然后利用等边对等角可得∠DCE=∠AEB,进而可得∠A=∠AEB; (2)首先证明△DCE是等边三角形,进而可得∠AEB=60°,再根据∠A=∠AEB,可得△ABE是等腰三角形,进而可得△ABE是等边三角形. 解答: 证明:(1)∵四边形ABCD是⊙O的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE, ∵DC=DE, ∴∠DCE=∠AEB, ∴∠A=∠AEB; (2)∵∠A=∠AEB, ∴△ABE是等腰三角形, ∵EO⊥CD, ∴CF=DF, ∴EO是CD的垂直平分线, ∴ED=EC, ∵DC=DE, ∴DC=DE=EC, ∴△DCE是等边三角形, ∴∠AEB=60°, ∴△ABE是等边三角形. 点评: 此题主要考查了等边三角形的判定和性质,以及圆内接四边形的性质,关键是掌握圆内接四边形对角互补. 27.(10分)(2015•南京)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系. (1)请解释图中点D的横坐标、纵坐标的实际意义; (2)求线段AB所表示的y1与x之间的函数表达式; (3)当该产品产量为多少时,获得的利润最大?最大利润是多少? 考点: 二次函数的应用.菁优网版权所有 分析: (1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元; (2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可; (3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可. 解答: 解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元; (2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1, ∵y=k1x+b1的图象过点(0,60)与(90,42), ∴ ∴, ∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90); (3)设y2与x之间的函数关系式为y=k2x+b2, ∵经过点(0,120)与(130,42), ∴, 解得:, ∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130), 设产量为xkg时,获得的利润为W元, 当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250, ∴当x=75时,W的值最大,最大值为2250; 当90≤x130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535, ∴当x90时,W=﹣0.6(90﹣65)2+2535=2160, 由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160, 因此当该产品产量为75kg时,获得的利润最大,最大值为2250. 点评: 本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大. 第23页(共23页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2015 江苏省 南京市 中考 数学试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文