2005年湖南高考文科数学真题及答案.doc
《2005年湖南高考文科数学真题及答案.doc》由会员分享,可在线阅读,更多相关《2005年湖南高考文科数学真题及答案.doc(9页珍藏版)》请在咨信网上搜索。
2005年湖南高考文科数学真题及答案 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟 第Ⅰ卷(选择题) 一、选择题:本大题共10小,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集U={-2,-1,0,1,2},A={-2,-1,0},B={0,1,2},则 =( ) A.{0} B.{-2,-1} C.{1,2} D.{0,1,2} 2.tan600°的值是( ) A. B. C. D. 3.函数f(x)=的定义域是 ( ) A.-∞,0] B.[0,+∞ C.(-∞,0) D.(-∞,+∞) 4.如图,正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,则E到平面AB C1D1的距离为( ) A. B. C. D. 5.已知数列满足,则= ( ) A.0 B. C. D. 6.设集合A={x|<0,B={x || x -1|<a,若“a=1”是“ ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 7.设直线的方程是,从1,2,3,4,5这五个数中每次取两个不同的数作为A、B的值,则所得不同直线的条数是 ( ) A.20 B.19 C.18 D.16 8.已知双曲线-=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为 ( ) A.30º B.45º C.60º D.90º 9.P是△ABC所在平面上一点,若,则P是△ABC的( ) A.外心 B.内心 C.重心 D.垂心 10.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15 x 2和L2=2 x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最 大利润为( ) A.45.606 B.45.6 C.45.56 D.45.51 第Ⅱ卷(非选择题) 二、填空题:本大题共5小题,每小题4分(第15小题每空2分),共20分,把答案填在答题卡中对应题号后的横线上. 11.设直线和圆相交于点A、B,则弦AB的垂直平分线方程是 12.一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线.为检查这批产品的质量,决定采用分层抽样的方法进行抽样.已知从甲、乙、丙3条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件产品 13.在的展开式中,x 2项的系数是 .(用数字作答) 14.设函数f(x)的图象关于点(1,2)对称,且存在反函数,f (4)=0,则= . 15.已知平面和直线,给出条件:①;②;③;④;⑤. (i)当满足条件 时,有;(ii)当满足条件 时,有 (填所选条件的序号) 三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 已知数列为等差数列,且 (Ⅰ)求数列的通项公式; (Ⅱ)证明 17.(本小题满分12分) 已知在△ABC中,sinA(sinB+cosB)-sinC=0,sinB+cos2C=0,求角A、B、C的大小 18.(本小题满分14分) 如图1,已知ABCD是上.下底边长分别为2和6,高为的等腰梯形,将它沿对称轴OO1折成直二面角,如图2 (Ⅰ)证明:AC⊥BO1; 图1 图2 (Ⅱ)求二面角O-AC-O1的大小. 19.(本小题满分14分) 设,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线 (Ⅰ)用表示a,b,c; (Ⅱ)若函数在(-1,3)上单调递减,求的取值范围 20.(本小题满分14分) 某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. (Ⅰ)求3个景区都有部门选择的概率; (Ⅱ)求恰有2个景区有部门选择的概率 21.(本小题满分14分) 已知椭圆C:+=1(a>b>0)的左.右焦点为F1、F2,离心率为e. 直线 l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设=λ. (Ⅰ)证明:λ=1-e2; (Ⅱ)若,△PF1F2的周长为6;写出椭圆C的方程; (Ⅲ)确定λ的值,使得△PF1F2是等腰三角形 参考答案 一、选择题:1—5:CDABB 6—10: ACDDB 二、填空题: 11. 12.5600 13.35 14.-2 15.③⑤ ②⑤ 三、解答题: 16.(I)解:设等差数列的公差为d. 由即d=1. 所以即 (II)证明因为, 所以 17.解法一 由 得 所以 即 因为所以,从而 由知 从而. 由 即 由此得所以 解法二:由 由、,所以 即 由得 所以 即 因为,所以 由从而,知B+2C=不合要求. 再由,得 所以 图3 18.解法一(I)证明 由题设知OA⊥OO1,OB⊥OO1. 所以∠AOB是所折成的直二面角的平面角, 即OA⊥OB. 故可以O为原点,OA、OB、OO1 所在直线分别为轴、y轴、z轴建立空间直角坐标系, 如图3,则相关各点的坐标是A(3,0,0), B(0,3,0),C(0,1,) O1(0,0,). 从而 所以AC⊥BO1. (II)解:因为所以BO1⊥OC, 由(I)AC⊥BO1,所以BO1⊥平面OAC,是平面OAC的一个法向量. 设是0平面O1AC的一个法向量, 由 得. 设二面角O—AC—O1的大小为,由、的方向可知,>, 所以cos,>= 即二面角O—AC—O1的大小是 解法二(I)证明 由题设知OA⊥OO1,OB⊥OO1, 所以∠AOB是所折成的直二面角的平面角, 即OA⊥OB. 从而AO⊥平面OBCO1, OC是AC在面OBCO1内的射影. 因为 , 所以∠OO1B=60°,∠O1OC=30°,从而OC⊥BO1 图4 由三垂线定理得AC⊥BO1. (II)解 由(I)AC⊥BO1,OC⊥BO1,知BO1⊥平面AOC. 设OC∩O1B=E,过点E作EF⊥AC于F,连结O1F(如图4),则EF是O1F在平面AOC内的射影,由三垂线定理得O1F⊥AC. 所以∠O1FE是二面角O—AC—O1的平面角. 由题设知OA=3,OO1=,O1C=1, 所以, 从而, 又O1E=OO1·sin30°=, 所以 即二面角O—AC—O1的大小是 19.解:(I)因为函数,的图象都过点(,0),所以, 即.因为所以. 又因为,在点(,0)处有相同的切线,所以 而 将代入上式得 因此故,, (II)解法一. 当时,函数单调递减. 由,若;若 由题意,函数在(-1,3)上单调递减,则 所以 又当时,函数在(-1,3)上单调递减. 所以的取值范围为 解法二: 因为函数在(-1,3)上单调递减,且是(-1,3)上的抛物线, 所以 即解得 所以的取值范围为 20.解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等. (I)3个景区都有部门选择可能出现的结果数为(从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A1,那么事件A1的概率为 P(A1)= (II)解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A2和A3,则事件A3的概率为P(A3)=,事件A2的概率为 P(A2)=1-P(A1)-P(A3)= 解法二:恰有2个景区有部门选择可能的结果为(先从3个景区任意选定2个,共有种选法,再让4个部门来选择这2个景区,分两种情况:第一种情况,从4个部门中任取1个作为1组,另外3个部门作为1组,共2组,每组选择2个不同的景区,共有种不同选法.第二种情况,从4个部门中任选2个部门到1个景区,另外2个部门在另1个景区,共有种不同选法).所以P(A2)= 21.(Ⅰ)证法一:因为A、B分别是直线l:与x轴、y轴的交点, 所以A、B的坐标分别是 所以点M的坐标是(). 由 即, 证法二:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是设M的坐标是 所以 因为点M在椭圆上,所以 即 解得 (Ⅱ)当时,,所以 由△MF1F2的周长为6,得 所以 椭圆方程为 (Ⅲ)解法一:因为PF1⊥l,所以∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有|PF1|=|F1F2|,即 设点F1到l的距离为d,由 得 所以 即当△PF1F2为等腰三角形 解法二:因为PF1⊥l,所以∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有|PF1|=|F1F2|, 设点P的坐标是, 则, 由|PF1|=|F1F2|得 两边同时除以4a2,化简得 从而 于是. 即当时,△PF1F2为等腰三角形- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2005 湖南 高考 文科 数学 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文