2018电大经济数学基础期末复习指导.doc
《2018电大经济数学基础期末复习指导.doc》由会员分享,可在线阅读,更多相关《2018电大经济数学基础期末复习指导.doc(16页珍藏版)》请在咨信网上搜索。
1、经济数学基础第一部分 微分学一、单项选择题1函数的定义域是( 且)2若函数的定义域是0,1,则函数的定义域是( )3下列各函数对中,( ,)中的两个函数相等 4设,则=() 5下列函数中为奇函数的是() 6下列函数中,(不是基本初等函数 7下列结论中,(奇函数的图形关于坐标原点对称)是正确的 8. 当时,下列变量中( )是无穷大量 9. 已知,当( )时,为无穷小量.10函数 在x = 0处连续,则k = (1) 11. 函数 在x = 0处(右连续 )12曲线在点(0, 1)处的切线斜率为( ) 13. 曲线在点(0, 0)处的切线方程为(y = x )14若函数,则=( )15若,则( )
2、16下列函数在指定区间上单调增加的是(e x)17下列结论正确的有(x0是f (x)的极值点) 18. 设需求量q对价格p的函数为,则需求弹性为Ep=( ) 二、填空题1函数的定义域是-5,22函数的定义域是(-5, 2 )3若函数,则4设函数,则5设,则函数的图形关于y轴对称6已知生产某种产品的成本函数为C(q) = 80 + 2q,则当产量q = 50时,该产品的平均成本为3.67已知某商品的需求函数为q = 180 4p,其中p为该商品的价格,则该商品的收入函数R(q) = 45q 0.25q 28. 1.9已知,当 时,为无穷小量 10. 已知,若在内连续,则2 .11. 函数的间断点
3、是12函数的连续区间是,13曲线在点处的切线斜率是14函数y = x 2 + 1的单调增加区间为(0, +)15已知,则= 016函数的驻点是17需求量q对价格的函数为,则需求弹性为18已知需求函数为,其中p为价格,则需求弹性Ep = 三、极限与微分计算题1解 = = = 2解:= = 3解 = =22 = 4 4解 = = = 2 5解 6解 = =7解:(x)= =8解 9解 因为 所以 10解 因为 所以 11解 因为 所以 12解 因为 所以 13解 14解: 15解 在方程等号两边对x求导,得 故 16解 对方程两边同时求导,得 =.17解:方程两边对x求导,得 当时, 所以,18解
4、 在方程等号两边对x求导,得 故 四、应用题1设生产某种产品个单位时的成本函数为:(万元),求:(1)当时的总成本、平均成本和边际成本; (2)当产量为多少时,平均成本最小?1解(1)因为总成本、平均成本和边际成本分别为:, 所以, , (2)令 ,得(舍去)因为是其在定义域内唯一驻点,且该问题确实存在最小值,所以当20时,平均成本最小. 2某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为(为需求量,为价格)2解 (1)成本函数= 60+2000 因为 ,即, 所以 收入函数=()= (2)因为利润函数=- =-(60+2000) = 40-2
5、000 且 =(40-2000=40- 0.2令= 0,即40- 0.2= 0,得= 200,它是在其定义域内的唯一驻点所以,= 200是利润函数的最大值点,即当产量为200吨时利润最大3设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元又已知需求函数,其中为价格,为产量,这种产品在市场上是畅销的,试求:(1)价格为多少时利润最大?(2)最大利润是多少?3解 (1)C(p) = 50000+100q = 50000+100(2000-4p) =250000-400p R(p) =pq = p(2000-4p)= 2000p-4p 2 利润函数L(p) = R(p)
6、 - C(p) =2400p-4p 2 -250000,且令 =2400 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大. (2)最大利润 (元)4某厂生产某种产品q件时的总成本函数为C(q) = 20+4q+0.01q2(元),单位销售价格为p = 14-0.01q(元/件),试求:(1)产量为多少时可使利润达到最大?(2)最大利润是多少?4解 (1)由已知利润函数 则,令,解出唯一驻点.因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大, (2)最大利润为 (元)5某厂每天生产某种产品件的成本函数为(元).为使平均成本最低,每天产
7、量应为多少?此时,每件产品平均成本为多少?5. 解 因为 = () = 令=0,即=0,得=140,= -140(舍去).=140是在其定义域内的唯一驻点,且该问题确实存在最小值. 所以=140是平均成本函数的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为 =176 (元/件)6已知某厂生产件产品的成本为(万元)问:要使平均成本最少,应生产多少件产品?6解 (1) 因为 = = 令=0,即,得=50,=-50(舍去), =50是在其定义域内的唯一驻点 所以,=50是的最小值点,即要使平均成本最少,应生产50件产品 第二部分 积分学一、单项选择题1在切线斜率为2x的积分曲
8、线族中,通过点(1, 4)的曲线为(y = x2 + 3 )2. 若= 2,则k =(1) 3下列等式不成立的是( ) 4若,则=().5. ( ) 6. 若,则f (x) =( )7. 若是的一个原函数,则下列等式成立的是() 8下列定积分中积分值为0的是() 9下列无穷积分中收敛的是()10设(q)=100-4q ,若销售量由10单位减少到5单位,则收入R的改变量是(350 )11下列微分方程中,( )是线性微分方程12微分方程的阶是(1).二、填空题12函数的原函数是-cos2x + c (c 是任意常数)3若,则4若,则=50 607无穷积分是收敛的(判别其敛散性)8设边际收入函数为(
9、q) = 2 + 3q,且R (0) = 0,则平均收入函数为2 + 9. 是2 阶微分方程.10微分方程的通解是三、计算题 解 2解 3解 4解 = = 5解 = = 6解 7解 = 8解 =-=9解法一 = =1 解法二 令,则 = 10解 因为 , 用公式 由 , 得 所以,特解为 11解 将方程分离变量: 等式两端积分得 将初始条件代入,得 ,c = 所以,特解为: 12解:方程两端乘以,得 即 两边求积分,得 通解为: 由,得 所以,满足初始条件的特解为: 13解 将原方程分离变量 两端积分得 lnlny = lnC sinx 通解为 y = eC sinx 14. 解 将原方程化为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 电大 经济 数学 基础 期末 复习 指导
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。