2016年湖南省岳阳市中考数学试卷(含解析版).doc
《2016年湖南省岳阳市中考数学试卷(含解析版).doc》由会员分享,可在线阅读,更多相关《2016年湖南省岳阳市中考数学试卷(含解析版).doc(21页珍藏版)》请在咨信网上搜索。
2016年湖南省岳阳市中考数学试卷 一、选择题(本大题8道小题,每小题3分,满分24分) 1.下列各数中为无理数的是( ) A.﹣1 B.3.14 C.π D.0 2.下列运算结果正确的是( ) A.a2+a3=a5 B.(a2)3=a6 C.a2•a3=a6 D.3a﹣2a=1 3.函数y=中自变量x的取值范围是( ) A.x≥0 B.x>4 C.x<4 D.x≥4 4.某小学校足球队22名队员年龄情况如下: 年龄(岁) 12 11 10 9 人数 4 10 6 2 则这个队队员年龄的众数和中位数分别是( ) A.11,10 B.11,11 C.10,9 D.10,11 5.如图是某几何体的三视图,则该几何体可能是( ) A.圆柱 B.圆锥 C.球 D.长方体 6.下列长度的三根小木棒能构成三角形的是( ) A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 7.下列说法错误的是( ) A.角平分线上的点到角的两边的距离相等 B.直角三角形斜边上的中线等于斜边的一半 C.菱形的对角线相等 D.平行四边形是中心对称图形 8.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是( ) A.0 B.2 C.3 D.4 二、填空题(本大题共8小题,每小题4分,满分32分) 9.如图所示,数轴上点A所表示的数的相反数是 . 10.因式分解:6x2﹣3x= . 11.在半径为6cm的圆中,120°的圆心角所对的弧长为 cm. 12.为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为 元. 13.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD= 度. 14.如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了 米. 15.如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是 . 16.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为 . 三、解答题(本大题共8道小题,满分64分) 17.计算:()﹣1﹣+2tan60°﹣(2﹣)0. 18.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD. 19.已知不等式组 (1)求不等式组的解集,并写出它的所有整数解; (2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率. 20.我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时. 21.某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题: AQI指数 质量等级 天数(天) 0﹣50 优 m 51﹣100 良 44 101﹣150 轻度污染 n 151﹣200 中度污染 4 201﹣300 重度污染 2 300以上 严重污染 2 (1 )统计表中m= ,n= .扇形统计图中,空气质量等级为“良”的天数占 %; (2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天? (3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议. 22.已知关于x的方程x2﹣(2m+1)x+m(m+1)=0. (1)求证:方程总有两个不相等的实数根; (2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值). 23.数学活动﹣旋转变换 (1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小; (2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆. (Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论; (Ⅱ)连接A′B,求线段A′B的长度; (3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示) 24.如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0). (1)求抛物线F1所表示的二次函数的表达式; (2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值; (3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由. 2016年湖南省岳阳市中考数学试卷 参考答案与试题解析 一、选择题(本大题8道小题,每小题3分,满分24分) 1.下列各数中为无理数的是( ) A.﹣1 B.3.14 C.π D.0 【考点】无理数. 【分析】π是圆周率,是无限不循环小数,所以π是无理数. 【解答】解:∵π是无限不循环小数, ∴π是无理数. 故选C. 2.下列运算结果正确的是( ) A.a2+a3=a5 B.(a2)3=a6 C.a2•a3=a6 D.3a﹣2a=1 【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法. 【分析】利用幂的有关运算性质逐一计算后即可确定正确的选项. 【解答】解:A、a2与a3不是同类项,不能合并,故错误; B、(a2)3=a6,正确,符合题意; C、a2•a3=a5,故错误; D、3a﹣2a=a,故错误, 故选B. 3.函数y=中自变量x的取值范围是( ) A.x≥0 B.x>4 C.x<4 D.x≥4 【考点】函数自变量的取值范围;二次根式有意义的条件. 【分析】根据二次根式有意义的条件可得出x﹣4≥0,解该不等式即可得出结论. 【解答】解:∵x﹣4≥0, ∴x≥4. 故选D. 4.某小学校足球队22名队员年龄情况如下: 年龄(岁) 12 11 10 9 人数 4 10 6 2 则这个队队员年龄的众数和中位数分别是( ) A.11,10 B.11,11 C.10,9 D.10,11 【考点】众数;中位数. 【分析】根据中位数和众数的定义分别进行解答即可. 【解答】解:年龄是11岁的人数最多,有10个人,则众数是11; 把这些数从小到大排列,中位数是第11,12个数的平均数, 则中位数是=11; 故选B. 5.如图是某几何体的三视图,则该几何体可能是( ) A.圆柱 B.圆锥 C.球 D.长方体 【考点】由三视图判断几何体. 【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案. 【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形, ∴该几何体是一个柱体, 又∵俯视图是一个圆, ∴该几何体是一个圆柱. 故选A. 6.下列长度的三根小木棒能构成三角形的是( ) A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【考点】三角形三边关系. 【分析】依据三角形任意两边之和大于第三边求解即可. 【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误; B、因为2+4<6,所以不能构成三角形,故B错误; C、因为3+4<8,所以不能构成三角形,故C错误; D、因为3+3>4,所以能构成三角形,故D正确. 故选:D. 7.下列说法错误的是( ) A.角平分线上的点到角的两边的距离相等 B.直角三角形斜边上的中线等于斜边的一半 C.菱形的对角线相等 D.平行四边形是中心对称图形 【考点】中心对称图形;角平分线的性质;直角三角形斜边上的中线;菱形的性质. 【分析】A:根据角平分线的性质,可得角平分线上的点到角的两边的距离相等. B:根据直角三角形斜边上的中线的性质,可得直角三角形斜边上的中线等于斜边的一半. C:根据菱形的性质,菱形的对角线互相垂直,但是不一定相等. D:根据中心对称图形的性质,可得常见的中心对称图形有:平行四边形、圆形、正方形、长方形,据此判断即可. 【解答】解:∵角平分线上的点到角的两边的距离相等, ∴选项A正确; ∵直角三角形斜边上的中线等于斜边的一半, ∴选项B正确; ∵菱形的对角线互相垂直,但是不一定相等, ∴选项C不正确; ∵平行四边形是中心对称图形, ∴选项D正确. 故选:C. 8.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是( ) A.0 B.2 C.3 D.4 【考点】分段函数. 【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算, 【解答】解:当x+3≥﹣x+1, 即:x≥﹣1时,y=x+3, ∴当x=﹣1时,ymin=2, 当x+3<﹣x+1, 即:x<﹣1时,y=﹣x+1, ∵x<﹣1, ∴﹣x>1, ∴﹣x+1>2, ∴y>2, ∴ymin=2, 故选B 二、填空题(本大题共8小题,每小题4分,满分32分) 9.如图所示,数轴上点A所表示的数的相反数是 2 . 【考点】相反数;数轴. 【分析】根据相反数的定义,即可解答. 【解答】解:数轴上点A所表示的数是﹣2,﹣2的相反数是2, 故答案为:2. 10.因式分解:6x2﹣3x= 3x(2x﹣1) . 【考点】因式分解-提公因式法. 【分析】根据提公因式法因式分解的步骤解答即可. 【解答】解:6x2﹣3x=3x(2x﹣1), 故答案为:3x(2x﹣1). 11.在半径为6cm的圆中,120°的圆心角所对的弧长为 4π cm. 【考点】弧长的计算. 【分析】直接利用弧长公式求出即可. 【解答】解:半径为6cm的圆中,120°的圆心角所对的弧长为: =4π(cm). 故答案为:4π. 12.为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为 1.24×109 元. 【考点】科学记数法—表示较大的数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:124000万=124000 0000=1.24×109, 故答案为:1.24×109. 13.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD= 70 度. 【考点】圆内接四边形的性质;圆周角定理. 【分析】根据圆内接四边形的对角互补求∠BAD的度数即可. 【解答】解:∵四边形ABCD为⊙O的内接四边形, ∴∠BCD+∠BAD=180°(圆内接四边形的对角互补); 又∵∠BCD=110°, ∴∠BAD=70°. 故答案为:70. 14.如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了 100 米. 【考点】解直角三角形的应用-坡度坡角问题. 【分析】根据坡比的定义得到tan∠A=,∠A=30°,然后根据含30度的直角三角形三边的关系求解. 【解答】解:根据题意得tan∠A==, 所以∠A=30°, 所以BC=AB=×200=100(m). 故答案为100. 15.如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是 1<x<4 . 【考点】反比例函数与一次函数的交点问题. 【分析】先根据图形得出A、B的坐标,根据两点的坐标和图形得出不等式的解集即可. 【解答】解:∵由图象可知:A(1,4),B(4,1),x>0, ∴不等式<kx+b的解集为1<x<4, 故答案为:1<x<4. 16.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为 . 【考点】规律型:点的坐标. 【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可. 【解答】解:由规律可得,2016÷4=504, ∴点P2016的在第四象限的角平分线上, ∵点P4(1,﹣1),点P8(2,﹣2),点P12(3,﹣3), ∴点P2016, 故答案为. 三、解答题(本大题共8道小题,满分64分) 17.计算:()﹣1﹣+2tan60°﹣(2﹣)0. 【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果. 【解答】解:原式=3﹣2+2﹣1 =2. 18.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD. 【考点】矩形的性质;全等三角形的判定与性质. 【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证. 【解答】证明:∵四边形ABCD是矩形, ∴∠B=∠C=90°, ∵EF⊥DF, ∴∠EFD=90°, ∴∠EFB+∠CFD=90°, ∵∠EFB+∠BEF=90°, ∴∠BEF=∠CFD, 在△BEF和△CFD中, , ∴△BEF≌△CFD(ASA), ∴BF=CD. 19.已知不等式组 (1)求不等式组的解集,并写出它的所有整数解; (2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率. 【考点】列表法与树状图法;解一元一次不等式组;一元一次不等式组的整数解. 【分析】(1)首先分别解不等式①②,然后求得不等式组的解集,继而求得它的所有整数解; (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积为正数的情况,再利用概率公式即可求得答案. 【解答】解:(1)由①得:x>﹣2, 由②得:x≤2, ∴不等式组的解集为:﹣2<x≤2, ∴它的所有整数解为:﹣1,0,1,2; (2)画树状图得: ∵共有12种等可能的结果,积为正数的有2种情况, ∴积为正数的概率为: =. 20.我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时. 【考点】分式方程的应用. 【分析】设学生步行的平均速度是每小时x千米,服务人员骑自行车的平均速度是每小时2.5x千米,根据学校与君山岛距离为24千米,服务人员所花时间比学生少用了3.6小时,可列方程求解. 【解答】解:设学生步行的平均速度是每小时x千米. 服务人员骑自行车的平均速度是每小时2.5x千米, 根据题意:﹣=3.6, 解得:x=3, 经检验,x=3是所列方程的解,且符合题意. 答:学生步行的平均速度是每小时3千米. 21.某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题: AQI指数 质量等级 天数(天) 0﹣50 优 m 51﹣100 良 44 101﹣150 轻度污染 n 151﹣200 中度污染 4 201﹣300 重度污染 2 300以上 严重污染 2 (1 )统计表中m= 20 ,n= 8 .扇形统计图中,空气质量等级为“良”的天数占 55 %; (2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天? (3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议. 【考点】条形统计图;用样本估计总体;扇形统计图. 【分析】(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比; (2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案; (3)提出合理建议,比如不燃放烟花爆竹或少燃放烟花爆竹等. 【解答】解:(1)∵m=80×25%=20,n=80﹣20﹣44﹣4﹣2﹣2=8, ∴空气质量等级为“良”的天数占:×100%=55%. 故答案为:20,8,55; (2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天), 答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天; 补全统计图: (3)建议不要燃放烟花爆竹. 22.已知关于x的方程x2﹣(2m+1)x+m(m+1)=0. (1)求证:方程总有两个不相等的实数根; (2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值). 【考点】根的判别式;一元二次方程的解. 【分析】(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证. (2)把x=0代入方程即可求m的值,然后将其整体代入所求的代数式并求值即可. 【解答】解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0. ∴△=(2m+1)2﹣4m(m+1)=1>0, ∴方程总有两个不相等的实数根; (2)∵x=0是此方程的一个根, ∴把x=0代入方程中得到m(m+1)=0, ∴m=0或m=﹣1, 把m=0或m=﹣1代入(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5, 可得:(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=5,或(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=3﹣3+5=5. 23.数学活动﹣旋转变换 (1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小; (2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆. (Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论; (Ⅱ)连接A′B,求线段A′B的长度; (3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示) 【考点】圆的综合题. 【分析】(1)根据∠A′B′B=∠A′B′C﹣∠BB′C,只要求出∠A′B′B即可. (2)(Ⅰ)结论:直线BB′、是⊙A′的切线.只要证明∠A′B′B=90°即可.(Ⅱ)在RT△ABB′中,利用勾股定理计算即可. (3)如图③中,当α+β=180°时,直线BB′、是⊙A′的切线.只要证明∠A′B′B=90°即可解决问题.在△CBB′中求出BB′,再在RT△A′B′B中利用勾股定理即可. 【解答】解;(1)如图①中,∵△A′B′C是由△ABC旋转得到, ∴∠A′B′C=∠ABC=130°,CB=CB′, ∴∠CBB′=∠CB′B,∵∠BCB′=50°, ∴∠CBB′=∠CB′B=65°, ∴∠A′B′B=∠A′B′C﹣∠BB′C=65°. (2)(Ⅰ)结论:直线BB′、是⊙A′的切线. 理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′, ∴∠CBB′=∠CB′B,∵∠BCB′=60°, ∴∠CBB′=∠CB′B=60°, ∴∠A′B′B=∠A′B′C﹣∠BB′C=90°. ∴AB′⊥BB′, ∴直线BB′、是⊙A′的切线. (Ⅱ)∵在RT△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3, ∴A′B==. (3)如图③中,当α+β=180°时,直线BB′、是⊙A′的切线. 理由:∵∠A′B′C=∠ABC=α,CB=CB′, ∴∠CBB′=∠CB′B,∵∠BCB′=2β, ∴∠CBB′=∠CB′B=, ∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°. ∴AB′⊥BB′, ∴直线BB′、是⊙A′的切线. 在△CBB′中∵CB=CB′=n,∠BCB′=2β, ∴BB′=2•nsinβ, 在RT△A′BB′中,A′B==. 24.如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0). (1)求抛物线F1所表示的二次函数的表达式; (2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值; (3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由. 【考点】二次函数综合题. 【分析】(1)利用一次函数的解析式求出点A、C的坐标,然后再利用B点坐标即可求出二次函数的解析式; (2)由于M在抛物线F1上,所以可设M(a,﹣a2﹣a+4),然后分别计算S四边形MAOC和S△BOC,过点M作MD⊥x轴于点D,则S四边形MAOC的值等于△ADM的面积与梯形DOCM的面积之和. (3)由于没有说明点P的具体位置,所以需要将点P的位置进行分类讨论,当点P在A′的右边时,此情况是不存在;当点P在A′的左边时,此时∠DA′P=∠CAB′,若以A′、D、P为顶点的三角形与△AB′C相似,则分为以下两种情况进行讨论:①=;②=. 【解答】解:(1)令y=0代入y=x+4, ∴x=﹣3, A(﹣3,0), 令x=0,代入y=x+4, ∴y=4, ∴C(0,4), 设抛物线F1的解析式为:y=a(x+3)(x﹣1), 把C(0,4)代入上式得,a=﹣, ∴y=﹣x2﹣x+4, (2)如图①,设点M(a,﹣a2﹣a+4) 其中﹣3<a<0 ∵B(1,0),C(0,4), ∴OB=1,OC=4 ∴S△BOC=OB•OC=2, 过点M作MD⊥x轴于点D, ∴MD=﹣a2﹣a+4,AD=a+3,OD=﹣a, ∴S四边形MAOC=AD•MD+(MD+OC)•OD =AD•MD+OD•MD+OD•OC =+ =+ =×3(﹣a2﹣a+4)+×4×(﹣a) =﹣2a2﹣6a+6 ∴S=S四边形MAOC﹣S△BOC =(﹣2a2﹣6a+6)﹣2 =﹣2a2﹣6a+4 =﹣2(a+)2+ ∴当a=﹣时, S有最大值,最大值为 此时,M(﹣,5); (3)如图②,由题意知:M′(),B′(﹣1,0),A′(3,0) ∴AB′=2 设直线A′C的解析式为:y=kx+b, 把A′(3,0)和C(0,4)代入y=kx+b, 得:, ∴ ∴y=﹣x+4, 令x=代入y=﹣x+4, ∴y=2 ∴ 由勾股定理分别可求得:AC=5,DA′= 设P(m,0) 当m<3时, 此时点P在A′的左边, ∴∠DA′P=∠CAB′, 当=时,△DA′P∽△CAB′, 此时, =(3﹣m), 解得:m=2, ∴P(2,0) 当=时,△DA′P∽△B′AC, 此时, =(3﹣m) m=﹣, ∴P(﹣,0) 当m>3时, 此时,点P在A′右边, 由于∠CB′O≠∠DA′E, ∴∠AB′C≠∠DA′P ∴此情况,△DA′P与△B′AC不能相似, 综上所述,当以A′、D、P为顶点的三角形与△AB′C相似时,点P的坐标为(2,0)或(﹣,0). 21- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 湖南省 岳阳市 中考 数学试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文