2013年湖南省湘潭市中考数学试卷(含解析版).doc
《2013年湖南省湘潭市中考数学试卷(含解析版).doc》由会员分享,可在线阅读,更多相关《2013年湖南省湘潭市中考数学试卷(含解析版).doc(31页珍藏版)》请在咨信网上搜索。
2013年湖南省湘潭市中考数学试卷 一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分) 1.(3分)﹣5的相反数是( ) A.5 B. C.﹣5 D. 2.(3分)一组数据1,2,2,3.下列说法正确的是( ) A.众数是3 B.中位数是2 C.极差是3 D.平均数是3 3.(3分)如图是由三个小方体叠成的一个立体图形,那么它的俯视图是( ) A. B. C. D. 4.(3分)下列图形中,是中心对称图形的是( ) A.平行四边形 B.正五边形 C.等腰梯形 D.直角三角形 5.(3分)一元二次方程x2+x﹣2=0的解为x1、x2,则x1•x2=( ) A.1 B.﹣1 C.2 D.﹣2 6.(3分)下列命题正确的是( ) A.三角形的中位线平行且等于第三边 B.对角线相等的四边形是等腰梯形 C.四条边都相等的四边形是菱形 D.相等的角是对顶角 7.(3分)如图,点P(﹣3,2)是反比例函数(k≠0)的图象上一点,则反比例函数的解析式( ) A. B. C. D. 8.(3分)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( ) A.BD=CE B.AD=AE C.DA=DE D.BE=CD 二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分) 9.(3分)计算:|﹣3|= . 10.(3分)如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A= . 11.(3分)到2012年底,湘潭地区总人口约为3020000人,用科学记数法表示这一数为 . 12.(3分)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为 . 13.(3分)“五一”假期,科科随父母在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,他从中任意抽取1张寄给外地工作的姑姑,则恰好抽中印有主席故居图案明信片的概率是 . 14.(3分)函数:中,自变量x的取值范围是 . 15.(3分)计算:= . 16.(3分)如图,根据所示程序计算,若输入x=,则输出结果为 . 三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分) 17.(6分)解不等式组.. 18.(6分)先化简,再求值:,其中x=﹣2. 19.(6分)如图,C岛位于我南海A港口北偏东60方向,距A港口60海里处,我海监船从A港口出发,自西向东航行至B处时,接上级命令赶赴C岛执行任务,此时C岛在B处北偏西45°方向上,海监船立刻改变航向以每小时60海里的速度沿BC行进,则从B处到达C岛需要多少小时? 20.(6分)2013年4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶往芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米? 21.(6分)6月5日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下是他收集数据后,绘制的不完整的统计图表: 关注问题 频数 频率 A 24 0.4 B 12 0.2 C n 0.1 D 18 m 合计 a 1 请你根据图表中提供的信息解答以下问题: (1)根据图表信息,可得a= ; (2)请你将条形图补充完整; (3)如果小文所在的学校有1200名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人? 22.(6分)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示. (1)求销售量y与定价x之间的函数关系式; (2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润. 23.(8分)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨. (1)小明一共有多少种可能的购买方案?列出所有方案; (2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率. 24.(8分)在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF. (1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由; (2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长. 25.(10分)如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒. (1)当t为何值时,PC∥DB; (2)当t为何值时,PC⊥BC; (3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值. 26.(10分)如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点. (1)求抛物线的解析式; (2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分? (3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由. 2013年湖南省湘潭市中考数学试卷 参考答案与试题解析 一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分) 1.(3分)﹣5的相反数是( ) A.5 B. C.﹣5 D. 【考点】14:相反数. 【专题】11:计算题. 【分析】只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等. 【解答】解:﹣5的相反数是5. 故选:A. 【点评】本题主要考查相反数的概念和意义:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等. 2.(3分)一组数据1,2,2,3.下列说法正确的是( ) A.众数是3 B.中位数是2 C.极差是3 D.平均数是3 【考点】W1:算术平均数;W4:中位数;W5:众数;W6:极差. 【分析】根据极差、众数、中位数及平均数的定义,结合各选项进行判断即可. 【解答】解:A、众数为2,故本选项错误; B、中位数是2,故本选项正确; C、极差为2,故本选项错误; D、平均数为2,故本选项错误; 故选:B. 【点评】本题考查了极差、中位数、平均数、众数的知识,掌握基本定义即可解答本题,难度一般. 3.(3分)如图是由三个小方体叠成的一个立体图形,那么它的俯视图是( ) A. B. C. D. 【考点】U2:简单组合体的三视图. 【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【解答】解:从上面看易得两个横向排列的正方形. 故选:B. 【点评】本题考查了三视图的知识,属于基础题,要求同学们掌握俯视图是从物体的上面看得到的视图. 4.(3分)下列图形中,是中心对称图形的是( ) A.平行四边形 B.正五边形 C.等腰梯形 D.直角三角形 【考点】R5:中心对称图形. 【分析】根据中心对称的定义,结合所给图形即可作出判断. 【解答】解:A、是中心对称图形,故本选项正确; B、不是中心对称图形,是轴对称图形,故本选项错误; C、不是中心对称图形,是轴对称图形,故本选项错误; D、不是中心对称图形,故本选项错误; 故选:A. 【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合. 5.(3分)一元二次方程x2+x﹣2=0的解为x1、x2,则x1•x2=( ) A.1 B.﹣1 C.2 D.﹣2 【考点】AB:根与系数的关系. 【专题】11:计算题. 【分析】直接根据根与系数的关系求解. 【解答】解:根据题意得x1•x2==﹣2. 故选:D. 【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个解为x1,x2,则x1+x2=﹣,x1•x2=. 6.(3分)下列命题正确的是( ) A.三角形的中位线平行且等于第三边 B.对角线相等的四边形是等腰梯形 C.四条边都相等的四边形是菱形 D.相等的角是对顶角 【考点】O1:命题与定理. 【分析】利用三角形中位线的性质,等腰梯形、菱形、对顶角的性质分别进行判断,即可得出答案. 【解答】解:A、三角形的中位线平行于三角形的第三边并且等于第三边的一半,故本选项错误; B、正方形,矩形对角线均相等,故本选项错误; C、四条边都相等的四边形是菱形,故本选项正确; D、相等的角不一定是对顶角,故本选项错误; 故选:C. 【点评】此题考查了命题与定理,熟练掌握各特殊四边形的判定和性质是解答此类问题的关键. 7.(3分)如图,点P(﹣3,2)是反比例函数(k≠0)的图象上一点,则反比例函数的解析式( ) A. B. C. D. 【考点】G7:待定系数法求反比例函数解析式. 【专题】16:压轴题. 【分析】把P点坐标代入反比例函数解析式即可算出k的值,进而得到答案. 【解答】解:∵点P(﹣3,2)是反比例函数(k≠0)的图象上一点, ∴k=﹣3×2=﹣6, ∴反比例函数的解析式为y=, 故选:D. 【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是反比例函数图象经过的点必能满足解析式. 8.(3分)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( ) A.BD=CE B.AD=AE C.DA=DE D.BE=CD 【考点】KH:等腰三角形的性质. 【专题】16:压轴题. 【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解. 【解答】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误; B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误; C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确; D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误. 故选:C. 【点评】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,小综合题,熟练掌握全等三角形的判定与性质是解题的关键. 二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分) 9.(3分)计算:|﹣3|= 3 . 【考点】15:绝对值. 【分析】根据负数的绝对值等于这个数的相反数,即可得出答案. 【解答】解:|﹣3|=3. 故答案为:3. 【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键. 10.(3分)如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A= 55° . 【考点】JA:平行线的性质. 【专题】11:计算题. 【分析】由AB与CD平行,利用两直线平行得到一对同位角相等,求出∠EFD的度数,而∠EFD为三角形ECF的外角,利用外角性质即可求出∠EFD的度数,即为∠A的度数. 【解答】解:∵∠EFD为△ECF的外角, ∴∠EFD=∠C+∠E=55°, ∵CD∥AB, ∴∠A=∠EFD=55°. 故答案为:55° 【点评】此题考查了平行线的性质,以及三角形的外角性质,熟练掌握平行线的性质是解本题的关键. 11.(3分)到2012年底,湘潭地区总人口约为3020000人,用科学记数法表示这一数为 3.02×106 . 【考点】1I:科学记数法—表示较大的数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:将3020000用科学记数法表示为3.02×106. 故答案为:3.02×106. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 12.(3分)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为 2x+16=3x . 【考点】89:由实际问题抽象出一元一次方程. 【分析】根据“送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完”表示出牛奶的总盒数,进而得出答案. 【解答】解:设敬老院有x位老人,依题意可列方程: 2x+16=3x, 故答案为:2x+16=3x. 【点评】此题主要考查了由实际问题抽象出一元一次方程,根据已知表示出牛奶的总盒数是解题关键. 13.(3分)“五一”假期,科科随父母在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,他从中任意抽取1张寄给外地工作的姑姑,则恰好抽中印有主席故居图案明信片的概率是 . 【考点】X4:概率公式. 【分析】由在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,直接利用概率公式求解即可求得答案. 【解答】解:∵在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案, ∴恰好抽中印有主席故居图案明信片的概率是:=. 故答案为:. 【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比. 14.(3分)函数:中,自变量x的取值范围是 x≠﹣1 . 【考点】E4:函数自变量的取值范围. 【专题】11:计算题. 【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+1≠0,解可得答案. 【解答】解:根据题意可得x+1≠0; 解可得x≠﹣1; 故答案为x≠﹣1. 【点评】求解析法表示的函数的自变量取值范围时:当函数表达式是分式时,要注意考虑分式的分母不能为0. 15.(3分)计算:= 2 . 【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值. 【专题】11:计算题;16:压轴题. 【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:原式=×+1 =1+1 =2. 故答案为2. 【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、特殊角的三角函数值、二次根式化简等考点的运算. 16.(3分)如图,根据所示程序计算,若输入x=,则输出结果为 2 . 【考点】2B:估算无理数的大小;E5:函数值. 【专题】16:压轴题;27:图表型. 【分析】根据>1选择左边的函数关系式进行计算即可得解. 【解答】解:∵x=>1, ∴y=2﹣1=3﹣1=2. 故答案为:2. 【点评】本题考查了函数值的计算,比较简单,准确选择函数关系式是解题的关键. 三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分) 17.(6分)解不等式组.. 【考点】CB:解一元一次不等式组. 【分析】首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可. 【解答】解:, 由①得:x≥2, 由②得:x≤4, 不等式组的解集为:2≤x≤4. 【点评】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到. 18.(6分)先化简,再求值:,其中x=﹣2. 【考点】6D:分式的化简求值. 【专题】11:计算题. 【分析】先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可. 【解答】解:原式=÷ =× =, 当x=﹣2时,原式=﹣=﹣1. 【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 19.(6分)如图,C岛位于我南海A港口北偏东60方向,距A港口60海里处,我海监船从A港口出发,自西向东航行至B处时,接上级命令赶赴C岛执行任务,此时C岛在B处北偏西45°方向上,海监船立刻改变航向以每小时60海里的速度沿BC行进,则从B处到达C岛需要多少小时? 【考点】TB:解直角三角形的应用﹣方向角问题. 【分析】分别在Rt△ACD与Rt△BCD中,利用三角函数的性质,即可求得BC的长,继而求得答案. 【解答】解:∵在Rt△ACD中,∠CAD=30°, ∴CD=×60=30海里, ∵在Rt△BCD中,∠CBD=45°, ∴BC=30×=60海里, 60÷60=1(小时). 答:从B处到达C岛需要1小时. 【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解. 20.(6分)2013年4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶往芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米? 【考点】B7:分式方程的应用. 【分析】首先设原计划每小时抢修道路x米,则实际施工速度为每小时抢修道路(x+40)米,根据题意可得等量关系:原计划修2400米道路所用时间﹣实际修2400米道路所用时间=2小时,根据等量关系,列出方程即可. 【解答】解:设原计划每小时抢修道路x米,由题意得: ﹣=2, 解得:x1=200,x2=﹣240, 经检验:x1=200,x2=﹣240,都是原分式方程的解, x=﹣240不合题意,舍去, 答:原计划每小时抢修道路200米. 【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意解出分式方程后要进行检验. 21.(6分)6月5日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下是他收集数据后,绘制的不完整的统计图表: 关注问题 频数 频率 A 24 0.4 B 12 0.2 C n 0.1 D 18 m 合计 a 1 请你根据图表中提供的信息解答以下问题: (1)根据图表信息,可得a= 60 ; (2)请你将条形图补充完整; (3)如果小文所在的学校有1200名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人? 【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图. 【分析】(1)根据空气污染的频数除以对应的频率即可求出a的值; (2)由a的值,减去其它频数求出n的值,补全条形统计图即可; (3)求出表格中m的值,乘以1200即可得到结果. 【解答】解:(1)根据题意得:24÷0.4=60,即a=60; 故答案为:60; (2)根据题意得:n=60﹣(24+12+18)=6, 补全条形统计图,如图所示; (3)由表格得:m=0.3, 根据题意得:该校关注“全球变暖”的学生大约有1200×0.3=360(人). 【点评】此题考查了条形统计图,频数(率)分布表,以及用样本估计总体,弄清题意是解本题的关键. 22.(6分)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示. (1)求销售量y与定价x之间的函数关系式; (2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润. 【考点】FH:一次函数的应用. 【分析】(1)由图象可知y与x是一次函数关系,又由函数图象过点(11,10)和(15,2),则用待定系数法即可求得y与x的函数关系式; (2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润. 【解答】解:(1)设y=kx+b(k≠0),由图象可知, , 解得, 故销售量y与定价x之间的函数关系式是:y=﹣2x+32; (2)超市每天销售这种商品所获得的利润是: W=(﹣2x+32)(13﹣10)=﹣6x+96, 当x=13(元)时,超市每天销售这种商品所获得的利润是: W=﹣6×13+96=18(元). 【点评】此题考查了一次函数的应用问题,此题综合性较强,难度一般,解题的关键是理解题意,根据题意求得函数解析式,注意待定系数法的应用,注意数形结合思想的应用. 23.(8分)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨. (1)小明一共有多少种可能的购买方案?列出所有方案; (2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率. 【考点】CE:一元一次不等式组的应用. 【分析】(1)设购买康乃馨x支,购买兰花y支,根据条件建立不等式组,运用分类讨论思想求出其解即可. (2)当小明先购买一张2元的祝福卡,小明购花的钱就只有28元了,求出能够购花的方案,就可以求出实现愿望的概率. 【解答】解:(1)设购买康乃馨x支,购买兰花y支,由题意,得 , ∵x、y为正整数, 当x=1时,y=6,7,8符合题意, 当x=2时,y=5,6符合题意, 当x=3时,y=4,5符合题意, 当x=4时,y=3符合题意, 当x=5时,y=1舍去, 当x=6时,y=0舍去. 共有8种购买方案, 方案1:购买康乃馨1支,购买兰花6支; 方案2:购买康乃馨1支,购买兰花7支; 方案3:购买康乃馨1支,购买兰花8支; 方案4:购买康乃馨2支,购买兰花5支; 方案5:购买康乃馨2支,购买兰花6支; 方案6:购买康乃馨3支,购买兰花4支; 方案7:购买康乃馨3支,购买兰花5支; 方案8:购买康乃馨4支,购买兰花3支; (2)由题意,得, , 购花的方案有: 方案1:购买康乃馨1支,购买兰花6支; 方案2:购买康乃馨1支,购买兰花7支; 方案3:购买康乃馨2支,购买兰花5支; 方案4:购买康乃馨2支,购买兰花6支; 方案5:购买康乃馨3支,购买兰花4支; ∴小明实现购买方案的愿望有5种,而总共有8中购买方案, ∴小明能实现购买愿望的概率为P=. 【点评】本题考查了列不等式组及运用分类讨论思想解答方案设计的运用,概率在实际问题中的运用,解答时根据不等式组及分类讨论思想求出购买方案是关键. 24.(8分)在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF. (1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由; (2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长. 【考点】KD:全等三角形的判定与性质;LE:正方形的性质. 【分析】(1)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证; (2)与(1)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OG=OE,再求出AG,然后利用勾股定理列式计算即可求出AD. 【解答】解:(1)AD=CF. 理由如下:在正方形ABCO和正方形ODEF中,AO=CO,OD=OF,∠AOC=∠DOF=90°, ∴∠AOC+∠COD=∠DOF+∠COD, 即∠AOD=∠COF, 在△AOD和△COF中,, ∴△AOD≌△COF(SAS), ∴AD=CF; (2)与(1)同理求出CF=AD, 如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE, ∵正方形ODEF的边长为, ∴OE=OD=×=2, ∴DG=OG=OE=×2=1, ∴AG=AO+OG=3+1=4, 在Rt△ADG中,AD===, ∴CF=AD=. 【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键. 25.(10分)如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒. (1)当t为何值时,PC∥DB; (2)当t为何值时,PC⊥BC; (3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值. 【考点】SO:相似形综合题. 【专题】16:压轴题. 【分析】(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可; (2)证△PCO∽△CBO,得出=,求出OP=即可; (3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,过P作PM⊥DC交DC延长线于M,求出PM、OP的长即可; ②当⊙P与BC相切时,根据△COB∽△PBM得出=,求出R=12即可;③当⊙P与DB相切时,证△ADB∽△MPB得出=,求出R即可. 【解答】解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点, ∴DC=5,OC=4,OB=3, ∵DC⊥y轴,x轴⊥y轴, ∴DC∥BP, ∵PC∥DB, ∴四边形DBPC是平行四边形, ∴DC=BP=5, ∴OP=5﹣3=2, 2÷1=2, 即当t为2秒时,PC∥BD; (2)∵PC⊥BC,x轴⊥y轴, ∴∠COP=∠COB=∠BCP=90∴, ∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°, ∴∠CPO=∠BCO, ∴△PCO∽△CBO, ∴=, ∴=, ∴OP=, ÷1=, 即当t为秒时,PC⊥BC; (3)设⊙P的半径是R, 分为三种情况:①当⊙P与直线DC相切时, 如图1,过P作PM⊥DC交DC延长线于M, 则PM=OC=4=OP, 4÷1=4, 即t=4; ②如图2,当⊙P与BC相切时, ∵∠BOC=90°,BO=3,OC=4,由勾股定理得:BC=5, ∵∠PMB=∠COB=90°,∠CBO=∠PBM, ∴△COB∽△PMB, ∴=, ∴=, R=12, 12÷1=12, 即t=12秒; ③根据勾股定理得:BD==2, 如图3,当⊙P与DB相切时, ∵∠PMB=∠DAB=90°,∠ABD=∠PBM, ∴△ADB∽△MPB, ∴=, ∴=, R=6+12; (6+12)÷1=6+12, 即t=(6+12)秒. 【点评】本题考查了勾股定理,切线的性质和判定,相似三角形的性质和判定的应用,主要考查学生的计算和推理能力. 26.(10分)如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点. (1)求抛物线的解析式; (2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分? (3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由. 【考点】HF:二次函数综合题. 【专题】16:压轴题. 【分析】如解答图所示: (1)首先构造全等三角形△AOB≌△CDA,求出点C的坐标;然后利用点C的坐标求出抛物线的解析式; (2)首先求出直线BC与AC的解析式,设直线l与BC、AC交于点E、F,则可求出EF的表达式;根据S△CEF=S△ABC,列出方程求出直线l的解析式; (3)首先作出▱PACB,然后证明点P在抛物线上即可. 【解答】解:(1)如答图1所示,过点C作CD⊥x轴于点D,则∠CAD+∠ACD=90°. ∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°, ∴∠OAB=∠ACD,∠OBA=∠CAD. ∵在△AOB与△CDA中, ∴△AOB≌△CDA(ASA). ∴CD=OA=1,AD=OB=2, ∴OD=OA+AD=3, ∴C(3,1). ∵点C(3,1)在抛物线y=x2+bx﹣2上, ∴1=×9+3b﹣2,解得:b=﹣. ∴抛物线的解析式为:y=x2﹣x﹣2. (2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:AB=. ∴S△ABC=AB2=. 设直线BC的解析式为y=kx+b,∵B(0,2),C(3,1), ∴, 解得k=﹣,b=2, ∴y=﹣x+2. 同理求得直线AC的解析式为:y=x﹣. 如答图1所示, 设直线l与BC、AC分别交于点E、F,则EF=(﹣x+2)﹣(x﹣)=﹣x. △CEF中,EF边上的高h=OD﹣x=3﹣x. 由题意得:S△CEF=S△ABC, 即:EF•h=S△ABC, ∴(﹣x)•(3﹣x)=×, 整理得:(3﹣x)2=3, 解得x=3﹣或x=3+(不合题意,舍去), ∴当直线l解析式为x=3﹣时,恰好将△ABC的面积分为相等的两部分. (3)存在. 如答图2所示, 过点C作CG⊥y轴于点G,则CG=OD=3,OG=1,BG=OB﹣OG=1. 过点A作AP∥BC交y轴于点W, ∵四边形ACBP是平行四边形, ∴AP=BC,连接BP,则四边形PACB为平行四边形. 过点P作PH⊥x轴于点H, ∵BC∥AP, ∴∠CBO=∠AWO, ∵PH∥WO, ∴∠APH=∠AWO, ∴∠CBG=∠APH, 在△PAH和△BCG中, ∴△PAH≌△BCG(AAS), ∴PH=BG=1,AH=CG=3, ∴OH=AH﹣OA=2, ∴P(﹣2,1). 抛物线解析式为:y=x2﹣x﹣2,当x=﹣2时,y=1,即点P在抛物线上. ∴存在符合条件的点P,点P的坐标为(﹣2,1). 【点评】本题是二次函数综合题型,考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、全等三角形、平行四边形、等腰直角三角形等知识点.试题难度不大,但需要仔细分析,认真计算. 第31页(共31页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 湖南省 湘潭市 中考 数学试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文